Model-Based Calibration Toolbox™
Getting Started Guide

<

MATLAB&SIMULINK

R2020b <) MathWorks®

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Model-Based Calibration Toolbox™ Getting Started Guide
© COPYRIGHT 2005-2020 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

November 2005 Online only New for Version 3.0 (Release 14SP3+)
September 2006 Online only Version 3.1 (Release 2006b)

March 2007 Online only Version 3.2 (Release 2007a)

September 2007 Online only Revised for Version 3.3 (Release 2007b)
March 2008 Online only Revised for Version 3.4 (Release 2008a)
October 2008 Online only Revised for Version 3.4.1(Release 2008a+)
October 2008 Online only Revised for Version 3.5 (Release 2008b)
March 2009 Online only Revised for Version 3.6 (Release 2009a)
September 2009 Online only Revised for Version 3.7 (Release 2009b)
March 2010 Online only Revised for Version 4.0 (Release 2010a)
September 2010 Online only Revised for Version 4.1 (Release 2010b)
April 2011 Online only Revised for Version 4.2 (Release 2011a)
September 2011 Online only Revised for Version 4.3 (Release 2011b)
March 2012 Online only Revised for Version 4.4 (Release 2012a)
September 2012 Online only Revised for Version 4.5 (Release 2012b)
March 2013 Online only Revised for Version 4.6 (Release 2013a)
September 2013 Online only Revised for Version 4.6.1 (Release 2013b)
March 2014 Online only Revised for Version 4.7 (Release 2014a)
October 2014 Online only Revised for Version 4.8 (Release 2014b)
March 2015 Online only Revised for Version 4.8.1 (Release 2015a)
September 2015 Online only Revised for Version 5.0 (Release 2015b)
March 2016 Online only Revised for Version 5.1 (Release 2016a)
September 2016 Online only Revised for Version 5.2 (Release 2016b)
March 2017 Online only Revised for Version 5.2.1 (Release 2017a)
September 2017 Online only Revised for Version 5.3 (Release 2017b)
March 2018 Online only Revised for Version 5.4 (Release 2018a)
September 2018 Online only Revised for Version 5.5 (Release 2018b)
March 2019 Online only Revised for Version 5.6 (Release 2019a)
September 2019 Online only Revised for Version 5.7 (Release 2019b)
March 2020 Online only Revised for Version 5.8 (Release 2020a)

September 2020 Online only Revised for Version 5.9 (Release 2020b)

Contents

Introduction

Model-Based Calibration Toolbox Product Description 1-2
What Is Model-Based Calibration? 1-3
Designs and Modeling in the Model Browser 1-3
Calibration Generation in CAGE 1-4

Gasoline Engine Calibration

2|

Gasoline Case Study Overview 2-2
Gasoline Calibration Problem Definition 2-2
Case Study Example Files i, 2-3

Design of Experiment 2-5
Context . .o 2-5
Benefits of Design of Experiment 2-5
Power Envelope Survey Testing 2-5
Create Designsand CollectData, 2-5
Data Collection and Physical Modeling 2-10

Empirical Engine Modeling 2-11
Examine Response Models 2-11
Examinethe TestPlan 2-13

Optimization 2-15
Optimization OVEIVIEW it et e e i 2-15
View Optimization Results 2-16
Set Up Optimization it 2-18
Filling Tables From Optimization Results 2-20

Design and Modeling Scripts

Introduction to the Command-Line Interface 3-2

Automate Design and Modeling With Scripts 3-3
Processes You Can Automate 3-3
Engine Modeling Scripts 3-5

Understanding Model Structure for Scripting 3-6
Projects and Test Plans for Model Scripting 3-6
Response Model Scripting 3-6
Boundary Model Scripting 3-7

How the Model Tree Relates to Command-Line Objects 3-9

Multi-Injection Diesel Calibration

4

Multi-Injection Diesel Calibration Workflow 4-2
Multi-Injection Diesel Problem Definition 4-2
Engine Calibration Workflow 4-5
Air-System Survey Testing i 4-6
Multi-Injection Testing i 4-7
Data Collection and Physical Modeling 4-7
Statistical Modeling 4-8
Optimization Using Statistical Models 4-9
Case Study Example Files i 4-14

Design of Experiment, 4-15
Benefits of Design of Experiment 4-15
Air-System Survey Testing 4-15
Create Designsand CollectData 4-15
Fit a Boundary Model to Air Survey Data 4-20
Use the Air Survey and Boundary Model to Create the Final Design 4-22
Multi-Injection Testing i 4-23

Statistical Modeling 4-25
Examine the Test Plans for Point-by-Point Models 4-25
Examine Response Models 4-27

Optimization e 4-29
Optimization OVEIVIEW it e e e e e e 4-29
Set Up Models and Tables for Optimization 4-29
Examine the Point Optimization Setup 4-32
Examine the Point Optimization Results 4-35
Create Sum Optimization from Point Optimization 4-37
Fill Lookup Tables from Optimization Results 4-41
Examine the Multiobjective Optimization 4-47

S|

Use a Two-Stage Model To Predict Engine Torque 5-2
Openthe AppandLoadData iiinn... 5-3
SetUptheModel 5-3
Verify the Model 5-5
Exportthe Model i 5-7

vi Contents

Create Multiple Modelsto Comparecoviiiinn.... 5-8

Generate Current Controller Calibration Tables for Flux-Based Motor

Controllers 5-13
Collect and Post Process MotorDatacovinnnnn. 5-14
Model MotorDatacvviv i e e 5-16
Generate Calibration 5-20

Mapped Engine Lookup Tables 5-33
Mapped CI Lookup Tables as Functions of Fuel Mass and Engine Speed
... 5-34
Use Test Plan Template to Fit Models 5-34
Open CAGE Projectt e e e 5-36
Use CAGE to Import and Replace Models 5-41
Review and Export Lookup Tables 5-42
Mapped CI Lookup Tables as Functions of Engine Torque and Speed . . 5-43
Use Test Plan Template to Fit Models 5-43
Open CAGE Projectt i e e e e 5-45
Use CAGE to Import and Replace Models 5-50
Review and Export Lookup Tables 5-51
Mapped SI Lookup Tables as Functions of Engine Torque and Speed . . 5-53
Use Test Plan Template to Fit Models 5-53
Open CAGE Projectt i e e 5-55
Use CAGE to Import and Replace Models 5-60
Review and Export Lookup Tables 5-61

6/

Design of Experiments, 6-2
Why Use Design of Experiment? 6-2
Design Styles 6-2
Create Examples Using the Design Editor 6-3

Set Up a Model and Createa Design 6-4
SetUpModel Inputs i 6-4
Open the Design Editor i, 6-4
Createa New Design e 6-4

Create a Constrained Space-Filling Design 6-5
Apply Constraints 6-5

View Design Displays i, 6-8

Use the Prediction Error Variance Viewer 6-9
Introducing the Prediction Error Variance Viewer 6-9
Add Points Optimallyc e 6-10

viii

Data Editor for Modeling

7

Manipulate Data for Modeling 7-2
Viewand EdittheData 7-2
Create New Variablesand Filters 7-5
Store and Import Variables, Filters, and Plot Preferences 7-6
Define Test GrOupings oo vttt e e e 7-6
Match Data to Experimental Designs 7-8

Tradeoff Calibration

8

Set Up and Perform a Tradeoff Calibration 8-2
Set Up a Tradeoff Calibration 8-2
Perform the Tradeoff Calibration 8-4

Data Sets

9

Compare Calibrations ToData 9-2
Setting UptheDataSet 9-2
Comparing the ItemsinaDataSet 9-5
Reassigning Variables 9-9

Filling Lookup Tables from Data

10|

Fill Lookup Tablesfrom Data 10-2
Setting Up a Lookup Table and Experimental Data 10-2
Fill Lookup Table from Experimental Data 10-5
Select Data Regions i 10-8
Export the Calibration 10-9

Optimization and Automated Tradeoff

11|

Optimization and Automated Tradeoff 11-2
Import Models to Optimize 11-2

Contents

EM-Sourced Examples

12

Create Local Designs

Create Optimal Designs

Load and ModifyData

Create and Apply Constraints
Gasoline Case Study Design of Experiment .

Point-by-Point Modeling for a Diesel Engine

Gasoline Case Study

ix

Introduction

The following sections introduce Model-Based Calibration Toolbox software.

* “Model-Based Calibration Toolbox Product Description” on page 1-2
* “What Is Model-Based Calibration?” on page 1-3

1

Introduction

Model-Based Calibration Toolbox Product Description

1-2

Model and calibrate complex powertrain systems

Model-Based Calibration Toolbox provides apps and design tools for modeling and calibrating
complex nonlinear systems. It can be used in a wide range of applications, including powertrain
systems such as engines, electric machines, pumps, and fans, as well as nonautomotive systems such
as jet engines, marine hydrofoils, and drilling equipment. You can define optimal test plans,
automatically fit statistical models, and generate calibrations and lookup tables for high-degree-of-
freedom systems that would require exhaustive testing using traditional methods. Using the toolbox
apps or MATLAB® functions, you can automate the model fitting and calibration process.

Models created with Model-Based Calibration Toolbox can be exported to Simulink® to support
control design, sensitivity analysis, hardware-in-the-loop testing, and other simulation activities.
Calibration tables can be exported to ETAS INCA and ATI Vision.

What Is Model-Based Calibration?

What Is Model-Based Calibration?

Experiments

-

Results
| Physical Testing
— . . Calibration
Design of ‘ ‘ Data | Calibration |

= Modeling | Generation .__,| " Accurate

Physical

— Model
| High Fidelity ‘ B

| Simulation

High accuracy engine models are a key component for reducing calibration effort and engine
development time.

The time spent calibrating an engine control unit has been increasing, due to new control actuators.
The new actuators give the potential for increased performance, reduced emissions, and improved
fuel consumption. It is necessary to apply advanced modeling and optimization techniques to achieve
the full benefits available from the addition of new actuators. Advanced modeling techniques offer
increased understanding of the complex, nonlinear engine responses. High accuracy models can be
used throughout the design process, including the calibration of base maps with the optimal settings
for the control parameters, determined by constrained optimizations.

The toolbox has two main user interfaces for model-based calibration workflows:

* Model Browser for design of experiment and statistical modeling
* CAGE Browser for analytical calibration
The Model Browser part of the toolbox is a powerful tool for experimental design and statistical

modeling. The models you build with the Model Browser can be imported into the CAGE Browser part
of the toolbox to produce optimized calibration tables.

Designs and Modeling in the Model Browser

The Model Browser is a flexible, powerful, intuitive graphical interface for building and evaluating
experimental designs and statistical models:
* Design of experiment tools can drastically reduce expensive data collection time.

* You can create and evaluate optimal, space-filling, and classical designs, and constraints can be
designed or imported.

* Hierarchical statistical models can capture the nature of variability inherent in engine data,
accounting for variation both within and between tests.

* The Model Browser has powerful, flexible tools for building, comparing, and evaluating statistical
models and experimental designs.

1-3

1

Introduction

1-4

* There is an extensive library of prebuilt model types and the capability to build user-defined
models.

* You can export models to CAGE or to MATLAB or Simulink software.
Starting the Model Browser

To start the application, type

mbcmodel

at the MATLAB command prompt.

Calibration Generation in CAGE

CAGE (CAlibration GEneration) is an easy-to-use graphical interface for calibrating lookup tables for
your electronic control unit (ECU).

As engines get more complicated, and models of engine behavior more intricate, it is increasingly
difficult to rely on intuition alone to calibrate lookup tables. CAGE provides analytical methods for
calibrating lookup tables.

CAGE uses models of the engine control subsystems to calibrate lookup tables. With CAGE, you fill
and optimize lookup tables in existing ECU software using Model Browser models. From these
models, CAGE builds steady-state ECU calibrations.

CAGE also compares lookup tables directly to experimental data for validation.
Starting the CAGE Browser

To start the application, type

cage

at the MATLAB command prompt.

Gasoline Engine Calibration

* “Gasoline Case Study Overview” on page 2-2

* “Design of Experiment” on page 2-5

* “Empirical Engine Modeling” on page 2-11
“Optimization” on page 2-15

2 Gasoline Engine Calibration

Gasoline Case Study Overview

2-2

In this section...

“Gasoline Calibration Problem Definition” on page 2-2

“Case Study Example Files” on page 2-3

Gasoline Calibration Problem Definition

This case study demonstrates how to systematically develop a set of optimal steady-state engine
calibration tables using the Model-Based Calibration Toolbox.

The engine to calibrate is a direct-injected 1.5L spark ignition turbocharged engine with dual cam-
phasers and turbocharger wastegate.

The aim of the calibration is to maximize torque at specific speed/load values across the engine's
operating range, and meet these constraints:

* Limit knock

* Limit residual fraction

* Limit exhaust temperature

* Limit calibration table gradients for smoothness.

The analysis must produce optimal engine calibration tables in speed and load for:

* Spark advance ignition timing (SA)

» Throttle position % (TPP)

* Turbo wastegate area % (WAP)

* Air/Fuel Ratio (Lambda: LAM)

* Intake cam phase (ICP)

* Exhaust cam phase (ECP)

* Torque (TQ)

» Brake-specific fuel consumption (BSFC)
e Boost (MAP)

* Exhaust temperature (TEXH)

Gasoline Case Study Overview

Ignition
Timing

Turbo Wastegate

‘3
7 Area
’"

et > \.}\]/ ‘ o

Cylinder Pressure

- Torque
Fuel
2 Air/Fuel Ratio -
Speed
This case study illustrates the model-based calibration process.
PHYSICAL RESULTS
TESTING
DESIGN OF DATA CALIBRATION Calibration
EXPERIMENTS MODELING GENERATION
Accurate
HIGH FIDELITY Engine Model
SIMULATION

Case Study Example Files

The following sections guide you through opening example files to view each stage of the model-
based calibration process. You can examine:

1 Designs, constraints, boundary model, and collected data, in topic “Design of Experiment” on
page 2-5.
Finished statistical models, in topic “Empirical Engine Modeling” on page 2-11.
Optimization setup and results, and filled calibration tables, in topic “Optimization” on page 2-
15.

Use these example files to understand how to set up systematic calibrations for similar problems. For
next steps, see “Design of Experiment” on page 2-5.

2-3

2 Gasoline Engine Calibration

Tip Learn how MathWorks® Consulting helps customers develop engine calibrations that optimally
balance engine performance, fuel economy, and emissions requirements: see Optimal Engine
Calibration.

2-4

https://www.mathworks.com/services/consulting/proven-solutions/optimal-engine-calibration.html
https://www.mathworks.com/services/consulting/proven-solutions/optimal-engine-calibration.html

Design of Experiment

Design of Experiment

Context

This topic describes design of experiments for the gasoline one-stage case study. To view the high-
level workflow, see “Gasoline Case Study Overview” on page 2-2.

Benefits of Design of Experiment

You use design of experiment to efficiently collect engine data. Testing time (on a dyno cell, or as in
this case, using high-fidelity simulation) is expensive, and the savings in time and money can be
considerable when a careful experimental design takes only the most useful data. Dramatically
reducing test time is increasingly important as the number of controllable variables in more complex
engines is growing. With increasing engine complexity, the test time increases exponentially.

Power Envelope Survey Testing

The first stage to solve this calibration problem is to determine the boundaries of the feasible system
settings. You need to generate the power envelope to constrain the design points. To do this, data was
collected using simulation across a range of speed and torque. The initial survey determined
boundaries that produce:

* Acceptable exhaust temperature (not too high to burn piston crowns)
* Achievable torque production

* Acceptable BSFC (not too high)
* Avoids knock

The envelope must include the idle region of low torque and speed, where the cams must be parked.
The cam timings are set to zero in the idle design.

The initial survey design and test data provide information about the engine operating envelope. This
information was used to create constraints for the final design, to collect detailed data about the
engine behavior within those boundaries. You can then use this data to create response models for all
the responses you need in order to create an optimal calibration for this engine.

The final design used 238 points for this engine with 4 inputs: speed, load, intake and exhaust cam.
You can view the constraints defining the operating envelope by following the steps below.

Create Designs and Collect Data

You can use a space-filling design to maximize coverage of the factors' ranges as quickly as possible,
to understand the operating envelope.

To create a design, you need to first specify the model inputs. Open the example file to see how to
define your test plan.
Open MATLAB. On the Apps tab, in the Automeotive group, click MBC Model Fitting.

In the Model Browser home page, in the Case Studies list, select Dual CAM gasoline engine
with spark optimized during testing. Alternatively, select File > Open Project and browse to
the example file gasolineOneStage.mat, found in matlab\toolbox\mbc\mbctraining.

2-5

2 Gasoline Engine Calibration

3 To view how to define your test plan design inputs, in the All Models tree, click the top project
node, gasolineOneStage. In the Common Tasks pane, click Design experiment. In the New
Test Plan dialog box, observe the inputs pane, where you can change the number of model inputs
and specify the input symbols, signals and ranges. This example project already has inputs
defined, so click Cancel.

4 Click the first test plan node in the All Models tree, gasolineOneStageDoE. The test plan view
appears.

5 Observe the inputs listed on the test plan diagram. Double-click the Inputs block to view the
ranges and names (symbols) for variables in the Input Factor Set Up dialog box. The design
inputs are torque, speed, intake cam, and exhaust cam. The dynamometer test setup is in speed/
torque and so the design is in speed/torque.

Close the dialog box by clicking Cancel.

6 After setting up inputs, you can create designs. In the Common Tasks pane, click Design
experiment.

The Design Editor opens. Here, you can see how these designs are built.

7 Click the first design in the tree, gasolineOneStageIdle. If you do not see a 2D plot, select
View > Current View > 2D Design Projection. Then select each design in the tree in turn.

* The first design in the tree, gasolineOneStageldle, concentrates points in the idle area
with cams parked. It uses the Sobol Sequence space-filling design type to maximize coverage.
To park the cams, after creating the idle region space-filling design, the cam phaser positions
are set to park position (0,0).

20 Design Projection =3
5:':':' T T T T T T T T T T
4000 E
@ 3000 |
B
5]
2000 [1
L]
o383003:
i [] -
1000 .= Oi:I i i i i i i i i
20 40 60 80 100 120 140 160 180 200
TQ
H-axis factor: | TQ - -axis factor:| Speed -

* The second design, gasolineOneStageNonIdle, is another Sobol Sequence space-filling
design to span the non-idle engine operating envelope.

2-6

Design of Experiment

|| X |
5000 T LR L ™ T T T
o? . . i'- N .,
. . . e 5 @ - .
. L s * ™
. ..l‘ . 1] . []
A0 e ® 0@ . '.i . ." " * ° 4
. . -. a® . [] . L]
[]
'I-- - : 'l' O L '-'
g w00y AR M O A
o * ": L] .. ., bR o . * .-- L
. ® - L] ™ . L] & L
L L i
000 . o ®® o s " . ."' L
. L e .
: e . ®0 .
. []
1000 | o, o "e* 7
i [m ® i i i i i
20 40 60 B0 100 120 140 160 180 200
TQ
X-axis factor:|TQU - r-axis factor: Speed -

* The final design is called gasolineOneStageMerged because it contains the other two
merged designs to cover the whole envelope.

ElEEd
SO0 T L— |' L — "o ‘.. N] |. T T
e T o Yo g e Te
" ., . L se * . . . g
000 o @ ®5 " %e e 0 T 4* ° 1
. ' -. '.. . [] . []
-
'." . o on ® b v et % .’
3 3000 [-'.' s ° AP *e I' *
" . .
u “eg e %, R s * s * o
- @ L ". - & . .-- »
2000 o % L e T e, }
s .l at® .,
-t! =.=:' :‘ LI ."
1000 | oi . . . T
222 '; * a®
20 40 60 80 100 120 140 160 180 20D
TO
H-axis fau:tnr:|Tt1 - -axis factor | Speed -

To see how the constraints are set up, select Edit > Constraints.

In the Constraints Manager dialog box, select each torque constraint in turn and click Edit.
Observe the maximum and minimum torque constraints define the upper and lower boundary of
the feasible operating envelope. These constraints were developed prior to this design in initial
wide-open throttle and closed-throttle engine performance testing.

2-7

2 Gasoline Engine Calibration

2-8

.
"4 Edit Constraint E=EEERS)

10 Table constraints are used for constraining the

Constraint type: |1D Table "] value of the Y-factor at specific values of the X-factor. ﬁ
* factor: Speed = | Mumber of breakpoints: 15 |Z|, ’ Span Factor Range] ’ Import Table...]
Y factor: Constraint ineguality:

1054 108|[

1357 125

1661 158|(=

1964 175)

2263 175

2571 191

2875 191

3179 208

3487 208 1000 1500 2000 2500 3000 3500 4000 4500 5000

ATOL A4 7 mm

L

ok | [cancet || e

;
"4 Edit Constraint =R

10 Table constraints are used for constraining the
Constraint type: | 10 Table -] value of the Y-factor at specific values of the X-factor. ﬁ
* factor: Speed = | Mumber of breakpoints: 12|E|, ’ Span Factor Range] ’ Import Table...]
Y factor: Constraint ineguality:
Speed TQ
651 10 200 w
750 10|[T |
1054 15 150 Lt
1357 15, o .
1964 15)=| T o100 —
2263 32 i
2571 32 50 ?
3179 45 ——
4089 45— ' ' ' ' ' ' ' E&
4393 45 1000 1500 2000 2500 3000 3500 4000 4500 5000 ——
AT AL 7 mm

ok | [cancet || e

Design of Experiment

10

11

12

13

14

Observe that you can define areas to exclude by dragging points, typing in the edit boxes, or
using the Table Editor tab.

To leave the constraint unchanged, click Cancel.

Observe the Properties of the selected gasolineOneStageMerged design under the tree,
listing 2 constraints, and 238 points.

To experiment with a new design and avoid editing the prior designs, select the root Designs
node and select File > New Design.

Add the constraints by selecting Edit > Constraints. In the Constraints Manager dialog box,
click Import. Select the torque max and min constraints from the merged design and click OK.
In the following dialogs, click OK to return to the Design Editor.

See how to construct a similar constrained space-filling design by selecting Design > Space
Filling > Design Browser, or click the space-filling design toolbar button.

In the Space-Filling Design Browser, observe the design type is Sobol Sequence, and specify a
Number of points. View the preview of design points. Click OK.

-

-

|4\ Space-Filling Design Browser =NAEE X

Design type: |Sobol Seguence v:
Number of points: 256 : Constraints present Preview

Options Automatically update preview

Sequence size; 382 20 | 3p|ap

@ Mo skip

(7) Skip initial 2*k points 5000

) Custom skip: (i} ..'. “ -"0

4000 -
[] Apply Matousek Affine Owen scramble .'. * e" ,'
™ .’% . .:.
Range of values: B 3000 ll‘.l.o o! 5
Input Factor Min Max h% ."a. * e %2 2

TQ 10 21505 a00 | Le® .:".::.". ¢

Speed 6501% 5000(% %ot 0% 8.°

INTCAM 0= spls . '.o -.?: .‘. %

EXTCAM o= sl 1000 | Wy % ® Jo°

50 100 150 200
TQ
X-axis factor:| TG v: -axis factor: Sp.. v:
l OK] ’ Cancel] [Help l
15 Click gasolineOneStageMerged. This design style is Custom because the points are rounded,

using Edit > Round Factor. You might also sort design points to make data collection easier on
a dyno. To preserve the space-filling sequence in case you want to add more points later, you can
copy a design before rounding or sorting.

gasolineOneStageMerged is the final design used to collect data. To make it easier to collect
the data, the points are rounded as follows:

* Intake and exhaust cam timings are rounded to 1 degree (2% of range)
* Speed is rounded to 50 RPM (1% of range)
* Torque is rounded to 5 Nm (3% of range)

2-9

2 Gasoline Engine Calibration

You can export designs or copy and paste design points into other files to proceed to data
collection.

16 Close the Design Editor.

The final gasolineOneStageMerged design was used to collect data from the GT-Power model with
the Simulink and Simscape™ test harness. The example Model Browser project file
gasolineOneStage.mat in the mbctraining folder contains this data, imported to the Model
Browser after the data collection.

Data Collection and Physical Modeling
The toolbox provides the data in the projects for you to explore this calibration example.

MathWorks collected the data using simulation tools. Control and simulation models were
constructed using a Simulink and Stateflow® test harness. Constrained experimental designs were
constructed using Model-Based Calibration Toolbox. The points specified in the design were
measured using the GT-Power engine simulation tool from Gamma Technologies (see https://
www.gtisoft.com). The engine to calibrate is a direct-injected 1.5L spark ignition turbocharged engine
with dual cam-phasers and turbocharger wastegate. This model is part of a GT-POWER engine library
from Gamma Technologies.

To collect the data, Simulink and Stateflow controlled the GT-Power engine model to the desired
Design of Experiments points.

Note Simulation time was reduced from days to minutes using Parallel Computing Toolbox™.

This simulation of 238 design points took 20 minutes to run in parallel on multiple machines in the
cloud. Running on a single core, the same simulation takes 3 days. Parallel Computing Toolbox
distributed the work to the 225 cores on a cloud computing cluster and showed that this problem
scales linearly as you add workers.

The data was used in the next step of model-based-calibration, to create statistical models.

PHYSICAL RESULTS
TESTING
DESIGN OF DATA CALIBRATION Calibration
EXPERIMENTS MODELING GENERATION
Accurate
HIGH FIDELITY Engine Model
SIMULATION

For next steps, see “Empirical Engine Modeling” on page 2-11.

2-10

https://www.gtisoft.com
https://www.gtisoft.com

Empirical Engine Modeling

Empirical Engine Modeling

After designing the experiments and collecting the data, you can fit statistical models to the data. Use
the toolbox to generate accurate, fast-running models from the measured engine data.

The dynamometer test setup is in speed/torque and so the design is in speed/torque. The model is in
speed/load because the production engine controller implementation uses load (derived from air flow)
instead of torque tables. The controller uses load because airflow sensors are presently less
expensive in mass production than torque meters.

Examine Response Models

1 Open MATLAB. On the Apps tab, in the Automotive group, click MBC Model Fitting.

In the Model Browser home page, in the Case Studies list, open Dual CAM gasoline engine

with spark optimized during testing.

2 Inthe gasolineOneStage.mat project, click the second test plan node in the All Models tree,
gasolineOneStageModels.

3 To assess high-level model trends, at the test plan node select the Response Models tab. After
you fit models, the view at the test plan node displays the Response Models tab by default. View
the cross-section plots of all the response models.

f' Test Plan: gasolineOneStageModels
Test Plan Response Models |

KIT1[] : 1.606 BEFC [g/Kwh] : 2407

LAM [-] : 1.003

600 -
500 | \ |
400 1 k |
300 | | 1 EQ‘: | | P =
ey - - g | | =
W| Be=e==sm===— Em==g == s e ===
200 L
151! —=F=== N =l NS L O
e ~ }r,', 5
¥
1 [| F]
0.5 1 |} |
ra
(1]
1.1
" s —-q:-.\}h_ - I _ — _ L .
1 e =1 —— | _._-,__." R ™] . e
- . — | ff S — 4 =~ g \\Q\
=T - DR
\
| | ol | | M, e
09 ::\ Ls \
08
. - . h
(1] 20 40 20 40 02 04 06 08 1 12 1000 2000 3000 4000
ECP: 24 ICP: 24,50 LOAD: 0.770388234/— Speed: 2800

2-11

2 Gasoline Engine Calibration

4 To view each response model in detail, expand gasolineOneStageModels test plan node in the
All Models tree. Select the first response node under the test plan node, BSFC.

All Models
@ gazolineCneStage
- fT gasolineOneStageDoE
- 1 gasolineDneStageModels
- {@ BSFC
- { @ MAP

- TEXH

-/ TSPEED
@ Torgue

- WAP

5 Examine the Response Surface plot and the Diagnostic Statistics plot.

2-12

Empirical Engine Modeling

/@ Response Model: BSFC

Model type: Gaussian Process Model (ARDSquared Exponential Constant)

Response Surface 8o X
Plot: Surface hd BSFC
X-axiz: |ECP -

Y-axis: |ICP -
2680 -

Name Value Tolerance
ECP |0:0.96:48 [J|Linked to X-... . 255 4

N =

ICP 0:0.98:49 Q Linked to Y_-: E 250 _]

LOAD |0.7703882 +|0.022%933 % =
Speed 28005 85 =1| P 245+

0
240 -
235 .
50

ICP [deqCrkAdy o 9
Select Data Point... [degCrkAdv] ECP [degCrkRet]

BSFC
15 T T T T T
10 F e . . i
¢ .
g . y
£ s5f s . . -
=2 +® o % . .
% ' .% .f.‘. L™ - *
2 .;,a e fr ot |
30 . . eop A . *
& o e g g% . . L]
. ') » -
Dt
L] o -
5 ® g e e " . .
o °
.
*e * .
_10 Il [] Il 1 1 Il
200 250 300 350 400 450 500
Predicted BSFC [g/Kwh]
H-axis factor: | Predicted BSFC [g/Kwh] vl -axis factor: | Residuals [g/Kwh] A

6 Examine the other responses in the All Models tree.

For details on using the plots and statistics to analyze models, see “Assess High-Level Model Trends”
and “Assess One-Stage Models”.

Examine the Test Plan
Examine the model setup.

1 Atthe gasolineOneStageModels test plan node, change to the test plan view if necessary by
clicking the Test Plan tab. The Model Browser remembers selected views.
Observe the inputs and response model outputs listed on the test plan diagram.

Double-click the Inputs block to view the ranges and names (symbols) for variables on the Input
Factor Set Up dialog box.

2-13

2 Gasoline Engine Calibration

4 Double-click the Model block to view that the model class is the default for one-stage models, a
Gaussian Process Model. When you use the Fit models button in the Common Tasks pane,
and select a One-stage template, the toolbox sets the model type to a Gaussian Process Model.

For details on setting up one-stage models, see “Fit a One-Stage Model”.
5 Click Cancel to close the Model Setup dialog box without altering your example models.

For next steps, see “Optimization” on page 2-15.

2-14

Optimization

Optimization

Optimization Overview

After creating statistical models to fit the data, you can use them in optimizations. You can use the
accurate statistical engine model to replace the high-fidelity simulation and run much faster, enabling
optimization to generate calibrations in feasible times. You use the statistical models to find the
optimal configurations of the engine that meet the constraints.

The statistical models described in “Empirical Engine Modeling” on page 2-11 were used in the next
step of model-based-calibration, to create optimized calibration tables.

PHYSICAL RESULTS
TESTING
DESIGN OF DATA CALIBRATION Galibeation
EXPERIMENTS MODELING GENERATION
Accurate
HIGH FIDELITY Engine Model
SIMULATION

The aim of the calibration is to maximize torque at specific speed/load values across the engine's
operating range, and meet these constraints:

e Limit knock (KIT1)

* Limit residual fraction

* Limit exhaust temperature

* Limit calibration table gradients for smoothness.

Turbocharger speed constraints are implicitly included in the boundary model which models the
envelope.

The analysis must produce optimal engine calibration tables in speed and load for:

* Spark advance ignition timing (SA)

» Throttle position % (TPP)

* Turbo wastegate area % (WAP)

* Air/Fuel Ratio (Lambda: LAM)

* Intake cam phase (ICP)

» Exhaust cam phase (ECP)

* Torque (TQ)

* Brake-specific fuel consumption (BSFC)
e Boost (MAP)

* Exhaust temperature (TEXH)

2-15

2 Gasoline Engine Calibration

2-16

View Optimization Results

Open MATLAB. On the Apps tab, in the Autometive group, click MBC Optimization.

In the CAGE Browser home page, in the Case Studies list, open Dual CAM gasoline engine
with spark optimized during testing. Alternatively, select File > Open Project and browse to
the example file gasolineOneStage. cag, found in matlab\toolbox\mbc\mbctraining.

In the Processes pane, click Optimization. Observe two optimizations, Torque Optimization
and Sum_ Torque Optimization.

Why are there two optimizations? To complete the calibration, you need to start with a point
optimization to determine optimal values for the cam timings. You use the results of this point
optimization to set up a sum optimization to optimize over the drive cycle and meet gradient
constraints to keep the tables smooth.

In the Optimization pane, ensure Torque Optimization is selected. In the Objectives pane,
observe the description: maximize Torque as a function of ECP, ICE, LOAD and Speed.

In the Constraints pane, observe the constraints: the boundary model of Torque, knock, residual
fraction, speed and exhaust temperature. If you want to see how these are set up, double-click a
constraint and view settings in the Edit Constraint dialog box.

In the Optimization Point Set pane, observe the variable values defining the points at which to
run the optimization.

To view the optimization results, in the Optimization pane expand the Torque Optimization
node and select Torque_Optimization OQutput.

Optimization

E Current run: I:E

Type: Single objective

All Optimization Results

Current Result - Optimization Solution

EIEES EIEES
) . Last change: _—
Table: |ECP_Table ~ | Edit Table :
| = | a Walues filled from Phvece: |qu”e V|
- - - A8 ;o
o LoD v| vooes - N B T
™ N R B T
g Pl ooy
40 o 14
=
Ly
& | 12
30 r
[10
o
g 25
- a
20
i
o 6
154 = = Sw
L 2 -, (s
W b
o 4
10
5 2
0
] 10 20 30 40
ECP
¥-axis: |ECP ~ Y-axis: |ICP ~
Optimization Results g0 X Constraint Summary B X
. | : | Name Description
Vector display format. |Fxpanded vertically Torgue_Boundary |Boundary constraint of Torque(ECP, ICP, LOAD, Speed)
Run I Accept ECP ICP LOAD 5 KIT1 KIT1(ECP, ICP, LOAD, Speed) <=2
1 ® [~ |RF1 RF1(ECP, ICP, LOAD, Speed) == 25
2 d .852 1.916 0.3 751 TSPEED TSPEEDNECP, ICP, LOAD, Speed) <= 200000
3 "] 8673 25709 0.4 751 TEXH TEXH(ECP, ICP, LOAD, Speed) <= 860
4 & [7.428 24 518 05 751
5 A [20743 20.259 06 75
[& [17.885 19,426 07 751
7 & [11.213 22.129 0.8 75
8 ® [13.581 21.652 0.9 75
9 & [12354 24 164 1 751
10 & O 13.42 24 535 1.1 75
1 & [11.911 37.454 12 751
12 & [19.557| 22,185 1.3 751
13 & [27.196 16.943) 14 75
14 | 4591e-5| 1.33%e-5 0.2 1001
15 | 13.283 0.332 0.3 1001
18 | 21.819 5424 04 1001
17 | 24 207 18.471 0.5 1001
18 & O 23.475 19.471 06 1001
19 & [14,445 16.552 0.7 1001
20 & O 10,413 23,655 na 1001 ¥
£ > £ >

To learn about analyzing optimization results, see “Choosing Acceptable Solutions”.

2-17

2 Gasoline Engine Calibration

2-18

In the Optimization pane, select Sum Torque Optimization and compare with the previous
point optimization setup.

Set Up Optimization

Learn how to set up this optimization.

1

To perform an optimization, you need to import the statistical models created in the Model
Browser. To see how to import models, in CAGE, select File > Import From Project.

The CAGE Import Tool opens. Here, you can select models to import from a model browser
project file or direct from the Model Browser if it is open. However, the toolbox provides an
example file with the models already imported, so click Close to close the CAGE Import Tool.

To view the models, click Models in the left Data Objects pane.

You need tables to fill with the results of your optimizations. To see all the tables, select the
Tables view.

To see how to set up these tables, select Tools > Create Lookup Tables from Model. The
Create Lookup Tables from Model wizard appears.

a Select the model Torque and click Next.

b On the next screen you see the controls for specifying the inputs and size of tables. Click the
Edit breakpoints buttons to see how to set up row and column values. Click Next.

4| Create Lookup Tables from Maodel — O >

Lookup Table Inputs

Select the lookup table inputs and set up the normalizers to use for all the new lookup
tables.

Use model operating points

Rows 1) input: LOAD A Columng (X} input. | Speed A
Normalizer: <Mew= w Normalizer: <Mew:= w
Table rows: 105 [|_|_|_[Table columns: 10 [|_|_|_[
LOAD normalizer: Speed normalizer:
Input Qutput Input Qutput
0.196 0| ™ 650 0| ™
0.323 1 1127778 1
0.451 2 1605.556 2
0.579 3 2083.333 3
0.707 4 2561111 4
0.834 5 30:38.289 5
0.962 & 3516.667 G
1.09 7 35904 444 7
1917 Al ¥ 4472 777 al ¥

Cancel < Back Finizh

Optimization

¢ On the next screen you can set limits on table values. To edit, double-click Table Bounds
values.

4. Create Lookup Tables from Madel — O >

Lookup Tables
Select the items to create lookup tables for. Select the lookup table fill process.

Normalizers: LOAD_norm_1,5peed_norm_1

tem Lookup Table Name Table Bounds

] x ECP % ECP Table [0,45] ~
X ICP LQ ICP_Table [0,459]

Turque 1c‘?Tu:lr-::|un=:_TaE|t:-In=_~ [-Inf, Inf]

m BSFC LQ BSFC_Table [-Inf, Inf]

|:|-4l K1 L? KIT1_Table [-Inf, Inf]

|:|-4l LAM LQ LAM_Table [-Inf, Inf]

|:|-4l MAP LQ MAP Table [-Inf, Inf]

m RF1 LQ RF1_Table [-Inf, Inf] W
B - >

Lookup table fil process
@ Optimization/Tradeoff
() Models

() None

Cancel < Back Mext = Finizh

Click Cancel to avoid creating new unnecessary tables in your example file.

5 Learn the easiest way to set up an optimization by selecting Tools > Create Optimization from
Model.

Select the model Torque and click Next.

Observe that the default settings will create a point optimization to minimize Torque, using
4 free variables, and constrained by a model boundary constraint. To create this example
optimization, edit the settings to maximize Torque, use the BSFC table breakpoints as a
data source, and use only ECP and ICP as free variables. Click Finish to create the
optimization.

2-19

2 Gasoline Engine Calibration

2-20

4. Create Optimization from Model — O >

Optimization
Choose optimization type and select free variables to optimize Torgue.

Algorithm: fmincon -
Objective type: Maximize ~ | Point e
Drata source: Breakpoints v BSFC_Table(LOAD Spe...
Free variables: ariable
2 selected v ECP

[x cp

[1x LoaD

|:|.'q.' Speed

Add a model boundary constraint

Cancel < Back Mext = Finizh

6 Compare your new optimization with the example Torque Optimization. To finish the setup
you need to add or import the rest of the constraints. In this case, select Optimization >
Constraints > Import Constraints. Import the constraints from the Torque Optimization
optimization.

7 To learn how to set up the sum optimization, from the Torque Optimization OQutput node,
select Solution > Create Sum Optimization. The toolbox creates a sum optimization for you.

8 Compare your new optimization with the example sum optimization,
Sum_Torque Optimization. The example shows you need to add the table smoothness
constraints to complete the calibration. To see how to set up table gradient constraints, double-
click the constraint GradECP.

To learn more about setting up optimizations and constraints, see:

* “Create Lookup Tables from a Model”

* “Creating Optimizations from Models”

+ “Edit Objectives and Constraints”

* “Create Sum Optimization from Point Optimization Output”

Filling Tables From Optimization Results

CAGE remembers lookup table filling settings. To view how the example tables are filled:

Optimization

1 Expand the example sum optimization node Sum _Torque Optimization and select the
Sum Torque Optimization Output node.

2 Select Solution > Fill Lookup Tables to open the Lookup Table Filling from Optimization
Results Wizard.

3 On the first screen, observe all the tables in the CAGE tables to be filled list. Note that the
LAM (lambda) table is not filled from the optimization results, because this table was filled from
the test data. Click Next.

4 On the second screen, observe all the tables are matched up with optimization results to fill them
with. Click Next.

5 On the third screen, observe the lookup table filling options. You can either click Finish to fill all
the tables, or Cancel to leave the tables untouched. The example tables are already filled with
these settings.

The following plot shows similar calibration results for the ICP table. Observe that the idle region has
locked cells to keep the cams parked at 0. If you want to lock values like this, to get smooth filled
tables, lock the cells before filling from optimization results.

The following plot shows similar calibration results for the ECP table.

2-21

2 Gasoline Engine Calibration

750 14

You can examine all the filled tables in the example project.

To learn more about analyzing and using optimization results, see “Optimization Analysis”.

See Also

Related Examples
. “Create Lookup Tables from a Model”

. “Creating Optimizations from Models”

. “Edit Objectives and Constraints”

. “Choosing Acceptable Solutions”

. “Create Sum Optimization from Point Optimization Output”
. “Filling Tables from Optimization Results”

2-22

Desigh and Modeling Scripts

* “Introduction to the Command-Line Interface” on page 3-2

* “Automate Design and Modeling With Scripts” on page 3-3

* “Understanding Model Structure for Scripting” on page 3-6

* “How the Model Tree Relates to Command-Line Objects” on page 3-9

3 Design and Modeling Scripts

Introduction to the Command-Line Interface

3-2

The Model-Based Calibration Toolbox product is a software tool for modeling and calibrating
powertrain systems. The command-line interface to the Model-Based Calibration Toolbox enables the
design of experiments and modeling tools available in the toolbox to be accessible from the test bed.

You can use these commands to assemble your specific engine calibration processes into an easy to
use script or graphical interface. Calibration technicians and engineers can use the custom interface
without the need for extensive training. This system enables:

» Transfer of knowledge from the research and development engineers into the production
environment

* Faster calibration

* Improved calibration quality

* Improved system understanding

* Reduced development time

Automate Design and Modeling With Scripts

Automate Design and Modeling With Scripts

In this section...

“Engine Modeling Scripts” on page 3-5

“Processes You Can Automate” on page 3-3

Processes You Can Automate

You can use these command-line functions to automate engine modeling processes.

collect on the test bed

Goal Function

Create or load a project * CreateProject
* Load

Create a new test plan for the project CreateTestplan

using a template

Create designs that define data points to|CreateDesign

Work with classical, space-filling or
optimal designs

* (CreateConstraint

* CreateCandidateSet
* Generate

* FixPoints

* Augment

Create or load a data object for the
project and make it editable

¢ CreateData
* BeginEdit

Load data from a file or the workspace

* ImportFromFile
* ImportFromMBCDataStructure

Work with data Examine Value
Modify * AddFilter
* AddTestFilter
Add variables AddVariable
Add Append
Group * DefineTestGroups
e DefineNumberOfRecordsPerTest
Export ExportToMBCDataStructure

Save your changes to the data, or
discard them

e CommitEdit
* RollbackEdit

Designate which project data object to
use for modeling in your test plan

AttachData

Create and evaluate boundary models,
either in a project or standalone

“Boundary Model Scripting” on page 3-7

3-3

3 Design and Modeling Scripts

Goal Function

Create models for the data; these can be |CreateResponse
one- or two-stage models and can
include datum models

values at specified
inputs

Work with your Examine input data |* DoublelInputData
models and response data |, DoubleResponseData
Examine predicted |* PredictedValue

PredictedValueForTest

Examine Predicted | PEV
Enothnancg « PEVForTest
(PEV) at specified

inputs

Examine and e QutlierIndices

remove outliers

OQutlierIndicesForTest
RemoveQutliers
RemoveOQutliersForTest
RestoreData

Create a selection
of alternative

CreateAlternativeModels

models
Choose the best * AlternativeModelStatistics
model by using the |, pjagnosticStatistics
diagnostic statistics o
* SummaryStatistics
Extract a model * Model Object
object from any . fit
response object
* CreateModel
¢ ModelSetup

Type (for models)
Properties (for models)
CreateAlgorithm
StepwiseRegression
Jacobian
ParameterStatistics
UpdateResponse

For two-stage test plans, once you are
satisfied with the fit of the local and
response feature models, calculate the
two-stage model

MakeHierarchicalResponse

Export models to MATLAB or Simulink

Export

3-4

Automate Design and Modeling With Scripts

Engine Modeling Scripts

To open examples scripts, in the Help browser, select the Examples tab. Run the scripts to learn
about:
* Loading and Modifying Data
* Designing experiments and constraining designs
* Gasoline engine modeling script to automatically generate a project for the gasoline case study,
including:
* Grouping and filtering data
* Boundary modeling
* Response modeling
* Removing outliers and copying outlier selections
* Creating alternative models and selecting the best based on statistical results
* Point-by-point diesel engine modeling to automatically generate a project for the diesel case study,
including:
* Defining engine operating points
* Creating designs for each operating point
* Augmenting designs to collect more data
* Building a point-by-point boundary model
* Create response models using the local multiple model type

See Also

More About

. “Automation Scripting”

3 Design and Modeling Scripts

Understanding Model Structure for Scripting

3-6

In this section...

“Projects and Test Plans for Model Scripting” on page 3-6
“Response Model Scripting” on page 3-6

“Boundary Model Scripting” on page 3-7

Projects and Test Plans for Model Scripting

To use the Model Browser in the Model-Based Calibration Toolbox product, you must understand the
structure and functions of the model tree to navigate the views. To use the command-line version of
the toolbox, you must understand the same structure and functions, that is, how projects, test plans,
and models fit together. The following sections describe the relationship between the different models
that you can construct. The diagrams in the following section, “How the Model Tree Relates to
Command-Line Objects” on page 3-9, illustrate these relationships.

* Projects can have one or more test plans.

* Projects can have one or more data objects.

» Test plans have no more than one data object.
» Test plans have response objects.

* If'a one-stage test plan, these are simply known as responses.
+ If two-stage test plan, these are hierarchical responses.
» Test plans have boundary tree objects.

Response Model Scripting

A response is a model fitted to some data. These are the types of responses:
* Hierarchical Response (Level 0)

A hierarchical response (also known as a two-stage response) models a ResponseSignalName
using a local response and one or more response features.

A hierarchical response has one or more different local responses (accessible via the property
LocalResponses) that provide different possible models of the ResponseSignalName. One of
these must be chosen as the best, and that will then be the local response used subsequently. The
response features of each of the local responses are available directly from those local response
objects.

* Local Response (Level 1)

The local response consists of models of the ResponseSignalName as a function of the local
input factors. The local input factors are accessible via the InputSignalNames property.

A local response has one or more response features (accessible via the property
ResponseFeatures) containing the models fitted to those response features of the local model.

* Response (Level 1 or 2)

Understanding Model Structure for Scripting

+ For two-stage test plans, response objects model the response features of local responses
(ResponseSignalName corresponds to the name of the response feature). In this case, the
response has a level value of 2.

* For one-stage test plans, response ohjects simply model the ResponseSignalName as a
function of the input factors. In this case, the response will have a level value of 1.

All responses can have zero or more alternative responses (accessible via the property
AlternativeResponses) that provide different possible models of the ResponseSignalName.
These all retain the same level as the response for which they are an alternative. One of these
must be chosen as the best and that will then be the response used subsequently.

See the illustrations in the following section, “How the Model Tree Relates to Command-Line
Objects” on page 3-9, for examples of different responses and how they relate to each other.

Note that each response contains a model object (mbcmodel.model) that can be extracted and
manipulated independently of the project. You can change the model type and settings, fit to new
data, examine coefficients, regression matrices and predicted values, and use stepwise functions to
include or remove terms. You can change model type, properties and fit algorithm settings. To learn
about what you do with a model object, see Model Object. If you change the model, you must use
UpdateResponse to replace the new model type in the response object in the project. When you use
UpdateResponse the new model is fitted to the response data. See UpdateResponse.

Boundary Model Scripting

You can create and evaluate boundary models either in a project or standalone. You can combine
boundary models in the same way as when using the Boundary Editor GUI. You can use boundary
models as design constraints.

In a project, the test plan has a Boundary property that can contain an mbcboundary . Tree object.
BoundaryTree = mbcmodel.testplan.Boundary

The BoundaryTree is a container for all the boundary models you create. The tree is empty until you
create boundaries, and if you change the testplan data the toolbox deletes the boundaries.

You can fit boundary models in mbcmodel projects using the boundary tree class
mbcboundary.Tree, or you can fit boundary models directly to data.

To create a boundary model outside of a project, you can either:

* Use the CreateBoundary package function:

B = mbcboundary.CreateBoundary(Type, Inputs)
* Use the fit method to create and fit a boundary to some data X:

B = mbcboundary.Fit(X, Type)
To create a boundary model within a project, use the CreateBoundary method of the boundary tree:
B = CreateBoundary(Tree, Type)

This creates a new boundary model, B, from the mbcboundary.Tree object, Tree. The test plan
inputs are used to define the boundary model inputs. The new boundary model is not added to the
tree, you must call Add.

3 Design and Modeling Scripts

3-8

To create a new boundary model from an existing boundary model, you can use the CreateBoundary
method of all boundary model types:

B = CreateBoundary(B,Type)

You can combine boundary models by using the InBest property of the boundary tree. This
corresponds to combining boundary models in best in the Boundary Editor GUI, as described in
“Combining Best Boundary Models” in the Model Browser documentation. You can also combine
boundary models with logical operators, for use as design constraints or outside projects.

You can change the ActivelInputs, Evaluate, and use as a designconstraint.

How the Model Tree Relates to Command-Line Objects

How the Model Tree Relates to Command-Line Objects

The tree in the Model Browser displays the hierarchical structure of models. This structure must be
understood to use the command-line interface. The following examples illustrate the relationship
between projects, test plans and responses in one-stage and two-stage models.

The following is an example of a two-stage model tree.

1. Project = Holiday
ELF} TwoStage
2.TestPlan ———————T" . /A& 1

3. Hierarchical Response A AP
J ﬁ kot
4. Local Response ik
/Q Bhigh_2

5. Responses @ Blow_2

The elements of the tree correspond to the following objects in the command-line interface:

1 Project

2 Test Plan

3 Hierarchical Response
4 Local Response

5 Responses

The following example illustrates a project containing a one-stage test plan; in the command-line
interface this corresponds to a project, one-stage test plan, and a response model.

Project

@ Holiday1

One-stage ___ |~ {7 One-Stage

test plan

r____________..-r f'& tq
Response

Hierarchical responses can have multiple local responses, as shown in the following example from the
Model Browser. In the command-line interface these are accessible via the property
LocalResponses for a hierarchical response object (nbcmodel.hierarchicalresponse). In this
example, the local responses are PS22, PS32, and POLY2.

Only one of these local responses can be chosen as best (in this example, PS22, indicated by the blue
icon) and used to construct the hierarchical response, together with the associated response features
of the local response. Each local response object has a set of responses, accessible by the property
ResponseFeatures(Local Response).

3-9

3 Design and Modeling Scripts

3-10

Test plan ———= 5 £ TwoStage

Hierarchical — =-/8 ta
response = pPs22

Responses

Responses can have zero or more alternative responses, as shown in the following model tree. You
call the method CreateAlternativeModels on the command line to do the same.

Project —

i HolidayMLE

Test plan —_— el

Hierarchical | & 4 1
response =

’_,.--“
Local responses -l

Responses
=/ PS32
= /@ kot
Alternative
f;ﬂ ki responses
; Bhigh_2 for knot

In this example, the alternative responses for the knot response are accessible via the property

AlternativeResponses. You can create alternative responses for any response (including all one-
stage responses).

You can use model templates to try alternative model types for several responses. The following
example shows the results of using a model template for four alternative responses (Linear -RBF,
RBF-multiquadric, Cubic, and Quadratic). The model template has been used to create
alternative responses for the responses knot and max. You can call the method
CreateAlternativeModels to do this in the command-line interface.

How the Model Tree Relates to Command-Line Objects

Local response — [ak- /g
= /g knot
Linear-REBF

Cubic
@ Quadiatic
/@ max

/@ Linear-RBF
é RBF-multiguadid

5 RBF-multiquadrid

Cubic
A Quadratic
/@ Bhigh_2
Blow_2

é Blow_3

Fx_phus10

Responses

Alternative
responses
for knot

Alternative
responses
for max

One of the alternative responses must be chosen as best for each response (call the method
ChooseAsBest). In this example, when Linear-RBF is chosen as best from the alternatives for the

knot response, then it is copied to knot.

3-11

Multi-Injection Diesel Calibration

* “Multi-Injection Diesel Calibration Workflow” on page 4-2
* “Design of Experiment” on page 4-15
» “Statistical Modeling” on page 4-25

“Optimization” on page 4-29

4 Multi-Injection Diesel Calibration

Multi-Injection Diesel Calibration Workflow

4-2

In this section...

“Multi-Injection Diesel Problem Definition” on page 4-2
“Engine Calibration Workflow” on page 4-5
“Air-System Survey Testing” on page 4-6
“Multi-Injection Testing” on page 4-7

“Data Collection and Physical Modeling” on page 4-7
“Statistical Modeling” on page 4-8

“Optimization Using Statistical Models” on page 4-9

“Case Study Example Files” on page 4-14

Multi-Injection Diesel Problem Definition

This case study shows how to systematically develop a set of optimal steady-state engine calibration
tables using Model-Based Calibration Toolbox.

The engine to be calibrated is a 3.1L multi-injection combustion ignition engine with common rail,
variable-geometry turbocharger (VGT), and cooled exhaust gas recirculation (EGR).

The aim of the calibration is to minimize brake-specific fuel consumption (BSFC) at specific speed/
load operating points across the engine’s operating range, and meet these constraints:

* Limit total NOx emissions.

* Limit maximum turbocharger speed.

* Limit calibration table gradients for smoothness.

The analysis must produce optimal calibration tables in speed and torque for:

* Best main start of injection timing

* Best total injected fuel mass per cylinder per cycle

* Best pilot injection timing relative to main timing

* Best pilot injection fuel mass fraction of total injection mass

* Best exhaust gas recirculation (EGR) position

* Best variable geometry turbocharger (VGT) vane position

* Best fuel rail pressure relative to nominal pressure vs. engine speed

These sections explain the objectives of selecting best values for these calibration tables and the
effects of these control variables on the engine:

* “Select Main Injection Timing for Efficiency” on page 4-3

» “Select Pilot Injection Timing to Control Noise” on page 4-4

* “Select Main Fuel Mass for Efficiency and Emissions” on page 4-4

» “Select Fuel Pressure for Efficiency and Emissions” on page 4-4

» “Select the Turbocharger Position to Control Air-Charge and EGR” on page 4-5

Multi-Injection Diesel Calibration Workflow

* “Select the EGR Valve Position to Control Air-Charge and Emissions” on page 4-5

Select Main Injection Timing for Efficiency

You select the injection timing of the main fuel injection to maximize engine efficiency. You aim to
make peak cylinder pressure occur slightly after piston top center. You inject fuel just before top-
center compression, as shown.

You also need to adjust injection timing according to speed and other conditions.

* You need to advance (move earlier before piston top center) the start of injection timing with
increasing speed and dilution (exhaust gas recirculation or EGR).

4-3

4 Multi-Injection Diesel Calibration

4-4

* You need to retard the start of injection timing with increased fresh air intake (load).

Select Pilot Injection Timing to Control Noise

You select the timing of the pilot fuel injection to start combustion early before the larger main fuel
injection. The pilot fuel injection occurs well before top-center compression and before the main
injection.

You can use pilot fuel injection to control combustion noise, because it affects the variability in
cylinder pressure.

In this example, pilot fuel injection timing is defined as a crank-angle delta offset before the main
injection, and is therefore a relative quantity.

Select Main Fuel Mass for Efficiency and Emissions

The air-fuel ratio (AFR) affects engine efficiency and emissions. A rich AFR causes high engine-out
particulates and low engine-out NOx. You control AFR by changing the main fuel mass for optimal
balance between power and emissions.

The AFR of the combustion mixture is determined by the main fuel injection mass for a given amount
of fresh air. The amount of air results mainly from EGR valve position, VGT position, intake throttle
position, and speed.

Select Fuel Pressure for Efficiency and Emissions

You can use fuel pressure to control fuel droplet size. Reduced fuel droplet size in the combustion
chamber reduces particulates, releases more energy from the fuel, and achieves more stable
combustion. High fuel pressure decreases fuel droplet size to improve efficiency and emissions.

At low loads, you can use lower fuel pressure to decrease fuel pump power losses without much effect
on emissions and power efficiency.

In this example, fuel pressure is controlled relative to an engine-speed-dependent base level via a fuel
pressure delta, and is therefore a relative quantity.

Multi-Injection Diesel Calibration Workflow

Select the Turbocharger Position to Control Air-Charge and EGR

You can use the variable-geometry turbocharger (VGT) position to balance fresh air and exhaust gas
recirculation for optimal NOx control at a given power level.

You can change VGT vane position to increase cylinder fresh air due to the turbocharger speed
increase. With the vanes closed, the turbocharger moves faster (high VGT speed) and sends a higher
load (or boost) of air into the engine. Closing the vanes also increases exhaust gas recirculation
(EGR) due to increased backpressure from the closed vanes.

Select the EGR Valve Position to Control Air-Charge and Emissions

You can use the EGR valve position to control the flow of burned exhaust gases back to the intake
manifold.

Reburning exhaust gases decreases in-cylinder temperature, resulting in a significant decrease in
NOx emissions.

If you select too much EGR for a given amount of injected fuel, then the air-fuel ratio will be rich,
causing increased soot emissions. Therefore, you must balance these competing objectives.

In engines, timing is everything. Using the EGR valve and all the other control variables, controlling
the engine's air flow is the key to optimizing fuel economy, reducing emissions, and increasing power
density.

Engine Calibration Workflow
The following graphic illustrates the workflow for the model-based calibration process. The workflow

can use a combination of tools: Model-Based Calibration Toolbox, Simulink, Stateflow, third-party
high-fidelity simulation tools, and Hardware-in-the-Loop testing for fine tuning calibrations on ECUs.

4-5

4 Multi-Injection Diesel Calibration

P T]
Viirtual Engine Dynamometer DOE Test |

MBC Toolbox Simulink/Stateflow

Design of Experiments Automated Virtual Engine Mapping High Fidelity Engine Model

MBC Toolbox MBC Toolbox ECU Calibrations

Model Fitting Calibration Generation -

Air-System Survey Testing

The first step to solve this calibration problem is to determine the boundaries of the feasible air-
system settings. To do this, you create an experimental design and collect data to determine air-
system setting boundaries that allow positive brake torque production in a feasible AFR range.

EGR Pos

VGT Pos

> Torque

Speed

AFR

These simplifications were used to conduct the initial study:

 Pilot injection is inactive.
* Main timing is fixed.

* Nominal fuel pressure vs RPM.

4-6

Multi-Injection Diesel Calibration Workflow

* Main fuel mass is moved to match the AFR target.

Fit a boundary model to these design points.

Multi-Injection Testing

After the air-system survey, you have established the boundaries of positive brake torque air-system
settings. Now, you can create an experimental design and collect data to gather fuel injection effects
within those boundaries. You can then use this data to create response models for all the responses
you need to create an optimal calibration for this engine.

» Total Fuel Mass/Inj
— Peak Pressure
— Exhaust AFR
—p Engine Out NOXx
- \/GT Speed

" | |Intake MAP
—p Exhaust MAP
—p COMP Pressure Ratio
» BSFC

— AIRFLOW
—) COMP Out Pressure
» COMP Speed
= EGRFLOW
== Exhaust Temp
== Fuel Pressure

Main SOl —»

Pilot SOl Delta —»

Pilot Fuel Mass Fraction —»
Fuel Pressure Delta —»
EGR Position —»

VGT Position —»|

t t

RPM Commanded Brake Torque

Data Collection and Physical Modeling
The toolbox provides the data for you to explore this calibration example.

MathWorks collected the data using simulation tools. Control and simulation models were
constructed using Simulink and Stateflow. Constrained experimental designs were constructed using
Model-Based Calibration Toolbox. The points specified in the design were measured using the GT-
Power engine simulation tool from Gamma Technologies (see https://www.gtisoft.com).

To collect the data, Simulink and Stateflow controlled the torque output of the GT-Power engine
model to the desired Design of Experiments points using total fuel mass. This graphic shows the
virtual dynamometer test model.

https://www.gtisoft.com

Multi-Injection Diesel Calibration

Virtual Engine Dynamometer Diesel DoE Test Setup

MAINTIMING]

[MAINT I \s]| fazn Qs

[PLOTCELTATIMING] Pio: Deata Temeg

e
PLOTMASSFRACT IO Piot Mess Fraction
[RAILPRES SURE] Fal Frassure

E!
7
F

(o> =
inje clion Facior Trangomms
s
o
rrc'r.qf..EwASS]
GTEUITE Woml

[EGRLIFT] | CeeHMBECY T2 dal)

-
[VETPCS] | -

|

VGTROS]

Test Executive -ﬁ
[| Crank Ange e mimmentt

m

Statistical Modeling

After designing the experiments and collecting the data, you can fit statistical models to the data. You
can use the toolbox to generate accurate, fast-running models from the measured engine data.

The following graphic shows the models to define in the toolbox to solve this calibration problem. The
graphic shows how the model inputs and output relate to the optimal tables, optimization operating
points, objectives and constraints you need to perform the optimization and create the calibration.

4-8

Multi-Injection Diesel Calibration Workflow

1/0 of Multi-Inject 3.1L Common Rail Engine Model with
Variable Geometry Turbocharger and Cooled EGR

Main SO| —>»
Pilot SOl Delta —»

Pilot Fuel Mass —» :
Fuel Pressure — | =

EGR Position —»
VGT Position —»

Optimal Tables

Operating
Points

o * 1 Model-Based Calibration Toolbox

Design of Experiments
Statistical Modeling

Creating mindos.

r

~ RPM & Torque

—+BSFC |- Objective

— NOX
— Turbo Speed
—— Table Gradients

Constrainis

— Total Fuel Mass:,j

Auxiliary Table

Goal: Minimize BSFC subject to NOx, turbocharger speed, and
user-specified table gradient constraints

Optimization Using Statistical Models

After creating statistical models to fit the data, you can use them in optimizations. You can use the
accurate statistical engine model to replace the high-fidelity simulation and run much faster, enabling
optimizations to generate calibrations.

Run an optimization to choose whether to use Pilot Injection at each operating point.
2 Optimize fuel consumption over the drive cycle, while meeting these constraints:

* Constrain total NOx

* Constrain turbocharger speed

* Constrain smoothness of tables
3 Fill lookup tables for all control inputs.

The following plots show a preview of the calibration results.

4-9

4 Multi-Injection Diesel Calibration

Pilot Mode Table

This graphic shows the plot of the table to select the active or inactive pilot mode depending on the
speed and commanded torque

You need to fill calibration tables for each control variable described in “Multi-Injection Diesel
Problem Definition” on page 4-2, in both pilot modes, active and inactive.

Following are all the pilot active tables.

4-10

Multi-Injection Diesel Calibration Workflow

EPEED% 3 B TQ

Total Injected Fuel Mass Table

4-11

4 Multi-Injection Diesel Calibration

Fuel Pressure Delta Table

Exhaust Gas Recirculation (EGR) Valve Position Table

4-12

Multi-Injection Diesel Calibration Workflow

Pilot Injection Timing (Pilot SOI Delta) Table

4-13

4 Multi-Injection Diesel Calibration

4-14

Pilot Fuel Mass Fraction Table

Case Study Example Files

The following sections guide you through opening example files to view each stage of the model-
based calibration process. You can examine:

1 Designs, constraints, boundary model, and collected data, in topic “Design of Experiment” on
page 4-15.
Finished statistical models, in topic “Statistical Modeling” on page 4-25.
Optimization setup and results, and filled calibration tables, in topic “Optimization” on page 4-
29.

Use these example files to understand how to set up systematic calibrations for similar problems. For
next steps, see “Design of Experiment” on page 4-15.

Tip Learn how MathWorks Consulting helps customers develop engine calibrations that optimally
balance engine performance, fuel economy, and emissions requirements: see Optimal Engine
Calibration.

https://www.mathworks.com/services/consulting/proven-solutions/optimal-engine-calibration.html
https://www.mathworks.com/services/consulting/proven-solutions/optimal-engine-calibration.html

Design of Experiment

Design of Experiment

Benefits of Design of Experiment

You use design of experiment to efficiently collect engine data. Testing time (on a dyno cell, or as in
this case, using high-fidelity simulation) is expensive, and the savings in time and money can be
considerable when a careful experimental design takes only the most useful data. Dramatically
reducing test time is increasingly important as the number of controllable variables in more complex
engines is growing. With increasing engine complexity, the test time increases exponentially.

Air-System Survey Testing

The first stage to solve this calibration problem is to determine the boundaries of the feasible air-
system settings. To do this, create an experimental design and collect data to determine air-system
setting boundaries that allow positive brake torque production in a feasible AFR range.

> Torque

These simplifications were used to conduct the initial study:

 Pilot injection is inactive.

* Main timing is fixed.

* Nominal fuel pressure vs RPM.

* Main fuel mass is moved to match the AFR target.

The design process follows these steps:

1 Set up variable information for the experiment, to define the ranges and names of the variables
in the design space.

Choose an initial model.

Create a base design that contains the correct constraints.

Create child designs using varying numbers of points and/or methods of construction.

Choose the design to run based on the statistics and how many points you can afford to run.

g A W N

Create Designs and Collect Data

You can use a space-filling design to maximize coverage of the factors' ranges as quickly as possible,
to understand the operating envelope.

4-15

4 Multi-Injection Diesel Calibration

To create a design, you need to first specify the model inputs. Open the example file to see how to
define your test plan.
In MATLAB, on the Apps tab, in the Automotive group, click MBC Model Fitting.

Select File > Open Project and browse to the example file CI MultiInject AirSurvey.mat,
found in matlab\toolbox\mbc\mbctraining.

3 The Model Browser displays the top project mode in the All Models tree,
CI Multiinject AirSurvey.

4 To see how to define your test plan, click Design Experiment. In the new test plan dialog box,
observe the inputs pane, where you can change the number of model inputs and specify the input
symbols, signals and ranges. This example project already has inputs defined, so click Cancel.

5 Click the first test plan node in the All Models tree, AirSurveyDoE. The test plan view appears.

Macdel
Impt=: Fesponses
1 Gadratic 1
EGRPOS [-]
WETROS [-]
AFRCMD [-]
SPEED [-]

6 Observe the inputs listed on the test plan diagram. Double-click the Inputs block to view the
ranges and names (symbols) for variables in the Input Factor Set Up dialog box.

4-16

Design of Experiment

o

-

B Input Factor Set Up E=R(E=R">x=
Number of factors: 4 :

Symbaol Min Max Transform Signal

EGRPOS 0 5 Mone -

VGETPOS 0.1 1 Mone -

AFRCWMD 15 100 Mone -

SPEED 400 4000 MNone -

’ QK]I Cancel ‘I Help ‘

Close the dialog box.

After setting up inputs, you can create designs. In the Common Tasks pane, click Design

experiment.

The Design Editor opens. Here, you can see how these designs are built:

* The final Air Survey design is a ~280 point Sobol Sequence design to span the engine
operating space. The Sobol Sequence algorithm generated the space-filling design points. The
final design is called AirSurveyMergedDoE because it contains two merged designs, one
with a constraint and one unconstrained:

* A 232-point design for overall engine operating range called AirSurveySpaceFill
* A 50-point design low speed/load for an idle region called AirSurveyIdle
Select the AirSurveySpaceFill design in the Designs tree, and select View > Current View

> 2D Design Projection.

4-17

4 Multi-Injection Diesel Calibration

4-18

9

p
"4 Design Editor - [AirSurveyDoE]

File Edit Wiew Design Teools Window Help
Bx» A
|BX|dE#Hz M 2| ?
Design Tree | EIEES
% Designs
] AirsurveySpaceFil |
i : T8 2 T []
e Airsurveyldie .‘. ®e . : S ., —.I
5B A s o % o
=] EigﬁlrﬂuweyMergeanE 0.9 [eg '.o . ® e * .
ﬁ AirsurveyMergedDo . L ™ . '. . a?
L]
. L L]
0B+ e o o s” l.. -'.'
. e B
L] []
o7l @ ‘e . e of |
: L o. ., LA --! .
L > . . e
L] . -
i .]
g os e es . o * .
o ‘. . t‘ e, & 2
S05(% e e’ e 1
le L P . L] ". [] ..'
L]
04y ®o ¥° '% e ® %
. o Yo, .
o %o Le* e« " ot
) IR 03[e ® A Y
. . %
Properties - . * " .
; 02 t® e e o % 1
Design Style [Sobol Se... °s . * . " S . .
Number of Poi... [232 e % % ¢ e "’
01 * * *
Mumber of Co... |2 = o " 3 3 4 5
Last Changed |25-Aug-.. EGRPOS
Model Quadratic
Discrepancy 0.530740 ¥-axis factor: |EGRPOS - -axis fau:tur:
Ready |

L

Select Edit > Constraints to see how the constraints are set up.

Design of Experiment

i '

23 =

4 Constraints Manager I. —

AFRCMD(SPEED) <= AFRCMDmax ~

Add
AFRCMD(SPEED) == AFRCWMDmin

Import...
Delete

Edit

FEbYE

Duplicate

NOT

-

[oK H Cancel H Help

—

L™ A

10 In the Constraints Manager dialog box, select a constraint and click Edit. Observe that you can
define areas to exclude by dragging points or typing in the edit boxes.

-

-

|4\] Edit Constraint =an=N X |
1D Table constraints are used for constraining the &4
Constraint type: | 1D Table =) value of the Y-factor at specific values of the X-factor. m "
X factor: SPEED v. Number of breakpoints: 3 : Span Factor Range: mport Table...
Y factor: | AFRC.. =] Constraint inequality: <= =
SPEED | AFRCMD 100

400 100
1500 100 80
4000 15

&0 1

AFRCMD

40 1

20 4

HRRRR

500 1000 1500 2000 2500 3000 3500 4000
SPEED

[oK][Cancal][Help

"

4

Click Cancel to close the Edit Constraint dialog box and leave the constraint unchanged. Close
the Constraints Manager dialog box.

11 Observe the Properties of the selected AirSurveySpaceFill design under the tree, listing 2
constraints, 232 points, and a Design Style of Sobol Sequence.

12 You can see how to construct a design like this by selecting Design > Space Filling > Design
Browser, or click the space-filling design toolbar button.
a + A dialog box asks what you want to do with the existing design points. Click OK to
replace the points with a new design.

* In the Space-Filling Design Browser, click Generate several times to try different space-
filling points. You can specify the Number of points, and view previews of design points.
Observe the default design type is Sobol Sequence.

4-19

4 Multi-Injection Diesel Calibration

4-20

14

15

-
|4\ Space-Filling Design Browser

Design type: | Sobol Sequence -]
Number of points: 230 : Constraints present
Options

Sequence size: 400

@ No skip

() Skip inttial 2"k points

() Custom skip: 0=
Apply Matousek Affine Owen scramble

Range of values:
Input Factor Min
EGRPOS

=]

WMax

VGTPOS

— |en
o] L 1 L R 3

-1
e (=

AFRCKD

L1031 (BT 1 1 3

100

SPEED 400

40001

Preview

Autoematically update preview

[10] 20 [30] 4D

1

=
(X1

(=]
[=:3
[]
o g™
L]
[]
-
'

WGETPOS
[=]
[=:]
rE
%o
8 L
[

=

.
»”*
s

l.-.“ hd .‘I. *s .l:o.

(i} 1

K-axis factor: EG..

2 3 4 5
EGRPOS

- v-axis factor: |V -

[

oK H cancel][Help]

L

-

Click Cancel to close the Space-Filling Design Browser and leave the design unchanged.
13 Click the AirSurveyIdle design to observe it is also a Sobol Sequence design, containing 50

points and no constraints.

16 Close the Design Editor.

Click the AirSurveyMergedDoE design to observe it is of type Custom, and contains 282 points
and 2 constraints. This design is formed by merging the previous 2 designs. You can find Merge
Designs in the File menu.

Click AirSurveyMergedDoE RoundedSorted, the child design of AirSurveyMergedDoE. This
design contains the same points but rounded and sorted, using Edit > Sort Points and Edit >
Round Factor. This is the final design used to collect data.

The final air survey design was used to collect data from the GT-Power model with the Simulink and
Simscape test harness. The example Model Browser project file CI MultiInject AirSurvey.mat
contains this data, imported to the Model Browser after the air survey. You can also view the data in
spreadsheet form in the file CI AirSurvey Data.xlsx in the mbctraining folder.

Fit a Boundary Model to Air Survey Data

You need to fit a boundary model to the data collected at the air survey design points. The test data
from the air survey was used to create a boundary model of the engine operating range. The example
Model Browser project file CI MultiInject AirSurvey.mat contains this boundary model.

1

In the Model Browser, click the second test plan node in the All Models tree,
AirSurveyBoundary.

Compare with the AirSurveyDoE test plan view. For the boundary modeling test plan,

Observe an imported data set listed under the Common Tasks pane. The second test plan
has imported the air survey data in order to fit a boundary model to the data.

Design of Experiment

Observe the Inputs are different in the test plan diagram. Instead of the AFRCMD input in the
DoE test plan, there is a SPEED input for boundary modeling. AFRCMD was used to constrain
the design points to collect the air survey data. To model the boundary before creating the
final design, you now need the SPEED input instead.

All Models fi Test Plan: AirSurveyBoundary
ZI_Multiinject_AirSurvey Common Tasks Humber of stages: 1
F AirsurveyDoE -
A AirSurveyBoundary Design experiment Current selection : Build new response model
Fit models
i
@ Maodel
Inputs Responses
O [m]
Dataset: AirSurveyBoundary : Airs
Stages : 1
Records: 156 i i CuziEie [
Factors: 4 EGRPOS [mm]
Tests : 156 4 VGETPOS [ratiq] o fa
SPEED [rew/min]
Validation Data: <None> TQ[Nm]

Design: <None>

Boundary Model:
Convex hull(SPEED, TQ)
Convex hul(EGRPOS VGTFOS)
Convex hull(VGTPOS5,.TQ)
Convex hul{(EGRPOS,SPEED)
Hotes:

In the Model Browser, select TestPlan > Edit Boundary to open the Boundary Editor.

Examine the boundary model by selecting View > Current View > Pairwise Projections. The
plots show the shape across the inputs.

4-21

4 Multi-Injection Diesel Calibration

4-22

n Boundary Editor EI@

Eile Edit View Window Help
(& En B &5 7

Boundary Tree Pairwise Projections EICTES
@ —_—

i Convex hull{SF
- {fg, Convex hull(EC 03
----- '5 Convex hull(ve
g Convex hull(EC

0.6

WETROS

0.4

0.z

3000

2300

2000

SPEED

o F 1500
Properties - Clne—Sta..l

1000
Number ... [0 -

Number ... [0

Best Bou... 300

m

Convex...[Conv...

Convex...[Conv... 250

Convex...[Conv... 200

-

Convex IConw

i
L .
Test Selector 150

100
Response

@ Local Bl

1=

— 2 4 02 04 06 08 1000 2000 3000
SEleet Test. EGRPOS VGTROS SPEED

Ready | |

Use the Air Survey and Boundary Model to Create the Final Design

The initial air survey design and test data provide information about the engine operating envelope,
where the feasible AFR range can produce positive brake torque. The resulting data lets you create a
boundary model. You can use the boundary model to create the final design avoiding infeasible points,
and in later steps to guide modeling and constrain optimizations.

Using the boundary model as a constraint, you can generate the final design to collect detailed data
about fuel injection effects within those boundaries. You can then use this data to create response
models for all the responses you need in order to create an optimal calibration for this engine.

The final Point-by-Point Multi-Injection design (around 7000 points) was generated using a MATLAB
script together with the Air Survey boundary model.

1 Open the example files CI PointbyPointDoE.m and createCIPointbyPointDoEs.m in the
mbctraining folder to see the script commands that build the final design.

Design of Experiment

7

The script keeps only points that lie within the boundary model, and continues generating design
points until it reaches the desired number of points. The Sobol space-filling design type keeps
filling in spaces for good coverage of the design space.

After generating design points for each test, the script creates a Model Browser project with a
point-by-point test plan, and attaches the point-by-point designs to the test plan.

Open the project CI MultiInject PointbyPoint.mat to view the project created by the
script.

Select the second test plan node in the tree, and then click the Test Plan tab. In the test plan
diagram, right-click the Operating Point Selector block, and select Design Experiment to view
the designs created by the script.

ey Cperating Point Selector

Set Up Maodel...
Design Experiment
View Design Data
Yiew Model

Summary Statistics

In the Design Editor, select Mode Points in the Design tree, and view the 2D Design Projection.

In the Design tree, select Actual Design. Observe that the boundary model constraint removed
points in the corners, so that the actual design points collect data only in the feasible region
determined by the initial air survey.

Return to the Model Browser test plan, right-click the Local Model block, and select Design
Experiment.

Local Model

hultiple Models

Set Up Model...
Design Experiment
View Design Data
View Model

Click test numbers to view the local design points at each operating point. At each test, the
values of SPEED and TQ are fixed and the space-filling design selects points across the space of
the local inputs.

Multi-Injection Testing

The final design was used to collect data for the following inputs and responses.

4-23

4 Multi-Injection Diesel Calibration

Main SOl —»|

Pilot SOl Delta —|

Pilot Fuel Mass Fraction —p|
Fuel Pressure Delta —|
EGR Position —»

VGT Position —p|

—p Total Fuel Mass/In]
—p Peak Pressure
— ExXhaust AFR
— Engine Out NOXx
> VGT Speed

* | |ntake MAP

—p Exhaust MAP
—> COMP Pressure Ratio
— BSFC

— AIRFLOW

> COMP Out Pressure

» COMP Speed
= EGRFLOW
== Exhaust Temp

P Fuel Pressure

t

RPM Commanded Brake Torque

The toolbox provides the data files for you to explore this calibration example. You can view the data
in spreadsheet form in the file CI MultiInject PointByPoint Data.xls, and the data is
imported to the Model Browser project file CI MultiInject PointbyPoint.mat.

For details on how the data was collected, see “Data Collection and Physical Modeling” on page 4-7.

For next steps, see “Statistical Modeling” on page 4-25.

Tip Learn how MathWorks Consulting helps customers develop engine calibrations that optimally
balance engine performance, fuel economy, and emissions requirements: see Optimal Engine

Calibration.

4-24

https://www.mathworks.com/services/consulting/proven-solutions/optimal-engine-calibration.html
https://www.mathworks.com/services/consulting/proven-solutions/optimal-engine-calibration.html

Statistical Modeling

Statistical Modeling

Examine the Test Plans for Point-by-Point Models

After designing the experiments and collecting the data, you can fit statistical models to the data. You
can use the toolbox to generate accurate, fast-running models from the measured engine data.

The following graphic shows the models to define in the toolbox to solve this calibration problem. The
graphic shows how the model inputs and output relate to the optimal tables, optimization operating
points, objectives and constraints you need to perform the optimization and create the calibration.

o

Pilot Fuel Mass —» e

1/0 of Multi-Inject 3.1L Common Rail Engine Model with
Variable Geometry Turbocharger and Cooled EGR

Main SOl —|,
Pilot SOI Delta—»

Fuel Pressure —» | =
EGR Position —»
VGT Position —

Model-Based Calibration Toolbox

Design of Experiments
Statistical Modeling

Creafing mindow:

Optimal Tables

Operating
Points

T

—~ RPM & Torque

—+BSFC |- Objective

— NOX
—s TUrbo Speed
—— Table Gradients

Constrainis

—— Total Fuel Mass}'

Auxiliary Table

Goal: Minimize BSFC subject to NOx, turbocharger speed, and
user-specified table gradient constraints

The toolbox provides the data for you to explore this calibration example. For details on how the data
was collected, see “Data Collection and Physical Modeling” on page 4-7.

Examine the model setup.

In MATLAB, on the Apps tab, in the Automotive group, click MBC Model Fitting.

2 In the Model Browser home page, in the Case Studies list, select Multi-injection diesel tested
with pilot injection on and off. Alternatively, select File > Open Project and browse to the
example file CI MultiInject PointbyPoint.mat, found in matlab\toolbox\mbc
\mbctraining.

3 The Model Browser remembers views, so change to the test plan view if necessary, by clicking
the PilotInactivePointbyPoint test plan node in the All Models tree.

The Response Models tab shows the cross-section view of the responses. Here you can assess
high-level model trends.

4-25

4 Multi-Injection Diesel Calibration

Test Plan Response Models

460
b3
]
* 440
a .
= I
E 420 H s L Ig—E—— F——d
2 g—?""",—.
£ 400
w
1]
380
2
&
S 0.015
=
g /
=] —
= h_EE‘—EH
g oo [o S Hoo e =
:
=
0.005
180 ™
L He
. N\
5 W,
i 175 %
= P P
P)
E / . ——= . ":/ i b —
E 170 | == SR T = B = e
z - — ——H Pl - e " —
. — T
il . [—F
w . w .
-8 -6 4 -2 0 2 =20 1] 20 0608 1 12141618 0.4 0.6 0.8
MANSOL -3.461914061 - FUELPRES.. |0.29296875 - EGRPOS: 11635742181 | VGTPOS: |0.608105468 -

4 Select the Test Plan tab.

Local Local Modal
Inputs

. MAINSOI [DegATDC]

FUELPRESSDELTA [MPA]
EGRPOS [mm]
WETPOS [ratio]

Responses

BSFC [g/KWh]*
NOXFLOW [g/s]*
EXHTEMP [C]*
VGTSPEED [revimin]*
PEAKPRESS [MPA]Y
AFR [ratio]*
TOTALFUELMASS [thgiin]*

Global
Inputs

. SPEED [revw/min]

TQCMD (TQ) [Nm]

5 Observe the inputs and response model outputs listed on the test plan diagram. This is a Point-
by-Point test plan. The Global Inputs SPEED and TQCMD select the operating points for each
model.

4-26

Statistical Modeling

6 Double-click the Inputs blocks to view the ranges and names (symbols) for variables on the Input
Factor Set Up dialog box.

7 Double-click the Local Model block to view that the Point-by-Point Model Setup dialog. View the
list of alternative models to fit at each operating point for a point-by-point test plan. When you
use the Fit models button in the Common Tasks pane, and select a Point-by-Point
template, the toolbox selects this list of models. This model setup fits four alternative model types
at each operating point, and selects the best model based on the Criteria setting, in this case
PRESS RMSE.

-

4 Point-by-Point Model Setup

1) fIMAINSOM2, FUELPRESSDELTA2, EGRPOS 2 VGTPOSA2 - Add
(2} fIMAINSO®3, FUELPRESSDELTAM3, EGRPOS3, VGTPOS 3)
(3} CQuadratic-RBF-KMedium

Edit Model...
(4} Gaussian Process Model (ARDSguaredExponential, Constant)

Delete

1iEE

Template...

Criteria: PRESS RMSE ~] Statistics. ..

Transform: MNone -

Automatic input ranges

[oK H Cancel H Help

S

L™ A

Click Cancel to close the Model Setup dialog box without altering your example models.

Similarly, examine the PilotActivePointbyPoint test plan. This test plan has the same
response models and model type setup, but two more local inputs for the pilot injection timing
and mass, PILOTDELTASOI and PILOTFMF. The data used to fit the models is also different, with
the two additional factors. Observe the Dataset information under the Common Task pane in
the test plan view.

For details on setting up point-by-point models, see “Fit a Point-by-Point Model”.

Examine Response Models

1 Expand the PilotInactivePointByPoint test plan node in the All Models tree and select the
nodes for each response name, e.g., BSFC.

2 C(Click through tests to see the model selected as best at each point.

4-27

4 Multi-Injection Diesel Calibration

4-28

The toolbox tries to select the best model for each operating point based on the selected

statistical criteria. However, you should always verify the model choices. To search for the best fit
you must examine each model, consider removing outliers, and compare with alternative fits. The
example models show the results of this process.

3 Look at the RMSE Plots. These plots can help you identify problem tests to investigate. Double-
click to view a test of interest (with larger RMSE) in the other plots.

RMSE Plots

FMSE Plots - double-click a point to change test.
T T

30 T T T T
d
2{:. — —
L
7]
S 18
10k 13 B
12 .3-3
é . 17 21
4 & 16% e 5 26 27
JLd @ é ¢! & 2 jJod Ja5e Je 20 2888 BE 4
0 5 10 15 20 25 30 35
Test Number
X-axiz factor:|Test Number v. “-axis factor: RMSE v.

4 Choose a model to use at a particular operating point by selecting the Best Model check box in

the list of Alternative Local

/& Alternative Local Models

Name Observations
/g Quadratic 59
/g Cubic 89
/2 Quadratic-RBF-Medium 99
/g GPM_ARDSquaredExpo... 99

Models.

Parameters
9

17

43

14.031

Box-Cox
1

1
1
1

PRESS RMSE
2.87

2.346

1.934

2662

RMSE | Best Model

2705]
2128 O
0.891
2237]

For details on analyzing point-by-point models, see “Analyze Point-by-Point Models and Choose the

Best”.

For next steps, see “Optimization” on page 4-29.

Tip Learn how MathWorks Consulting helps customers develop engine calibrations that optimally
balance engine performance, fuel economy, and emissions requirements: see Optimal Engine

Calibration.

https://www.mathworks.com/services/consulting/proven-solutions/optimal-engine-calibration.html
https://www.mathworks.com/services/consulting/proven-solutions/optimal-engine-calibration.html

Optimization

Optimization

Optimization Overview

After creating the statistical models to fit the data, you can use them in optimizations. You can use the
accurate statistical engine model to replace the high-fidelity simulation and run much faster, enabling
optimization to generate calibrations in feasible times.

Run an optimization to choose whether to use Pilot Injection at each operating point.
2 Optimize fuel consumption over the drive cycle, and meet these constraints:

* Constrain total NOx
* Constrain turbocharger speed
* Constrain smoothness of tables
3 Fill lookup tables for all control inputs.

Set Up Models and Tables for Optimization

To perform an optimization, you need to import the statistical models created earlier in the Model
Browser.

In MATLAB, on the Apps tab, in the Automotive group, click MBC Optimization.
2 To see how to import models, on the home page, click Import From Project

The CAGE Import Tool opens. Here, you can select models to import from a model browser
project file or direct from the Model Browser if it is open. However, the toolbox provides an
example file with the models already imported, so click Close to close the CAGE Import Tool.

3 On the home page, in the Case Studies list, select the multi-injection example, or select File >
Open Project and browse to the example file CI MultiInject.cag, found in matlab
\toolbox\mbc\mbctraining.

Click Models in the left Data Objects pane to view the models.

5 To see how to set up tables to fill with the results of your optimizations, select Tools > Create
Lookup Tables from Model. The Create Lookup Tables from Model wizard opens.

4-29

4 Multi-Injection Diesel Calibration

4| Create Lookup Tables from Model — O >
Lookup Table Inputs
Select the lookup table inputs and set up the normalizers to use for all the new lookup
tables.
|:| Use model operating points
Rows () input: SPEED A Columnz (X} input: |TQ v
Mormalizer: <New = o Mormalizer: <New = o
Table rows: == [|_|_|_|_ Table columns: == [|_|_|_|_
SPEED normalizer: TQ normalizer:
Input Cutput Input Cutput
200 0| ™ 30 Of ™
1045 1 5 1
1200 2 &2 2
1535 3 108 3
1780 4 134 4
2025 5|\ 180 5|\
Cancel < Back Mext = Finizh

Select the model BSFC and the Create operating point data set check box, and click Next.

7 Ifyou left the defaults, you would use the model operating points for the table breakpoints.
However, you need to create different tables to the operating points.

a C(Clear the Use model operating points check box.
b Select SPEED and TQ for the axis inputs.
¢ Enter 11 for the table rows and columns.

4-30

Optimization

4 Create Tables from Model — O *

Table Inputs
Select the table inputs and =&t up the normalizers to use for all the new tables.

|:| Use model operating points

e —FD L ETELT — et
Normalizer: <Mew> e Normalizer: <MNew> e
Table rows: hls= [|_|_|_[Table columns: = [|_|_|_[
SPEED normalizer: TQ normalizer:
Input Qutput Input Qutput
200 0 ™ 30 0| ™
1045 1 56 1
1250 2 a2 2
1535 3 108 3
1780 4 134 4
2025 5| w 160 5| w
Cancel < Back Mext = Finizh
Click Next.

View the last screen to see how many tables CAGE will create for you if you finish the wizard.

Click Cancel to avoid creating new unnecessary tables in your example file. The example file
already contains all the tables needed for your calibration results.

4-31

4 Multi-Injection Diesel Calibration

4-32

4. Create Lookup Tables from Model — O >
Lookup Tables
Select the items to create lookup tables for. Select the lockup table fill process.
Mormalizers: SPEED _norm_1,TQ_norm_1
ftem Loockup Table Mame Table Bounds
X MAINSOI % MANSOI_Table [-10, 2.949] s
X PILOTDELTASOI LQ PILOTDELTASO] Table [2, 14045]
X PILLOTFMF LQ PILOTFMF_Table [0.01,0.149]
X FUELPRESSDELTA LQ FUELPRESSDELTA_Table |[-30, 25.883]
x EGRPOS % FGRPOS_Table [0.5 4.965]
| X WETPOS 1c;“‘-.-‘GTF'l:IS Takble [0.2, 0.8591] W
£ >
Lookup table fill process
O Optimization/Tradeoff
@ Hodels
D Mone
Cancel < Back Mext = Finizh

9 Select the Lookup Tables view to see all the tables. Observe there are tables named wPilot
and noPilot that will be filled by optimization results. The goal is to fill separate tables for
each mode, pilot injection active and no pilot injection.

Examine the Point Optimization Setup

The example file CI MultiInject.cag shows the results of the multistage process to finish this
calibration.

1 Click Optimization in the left Processes pane to view the optimizations.

Optimization

£ C1_Muttilnject

o3 BEFC_NOX

:
: BSFC_SumOpt
&[] sum_BSFC_NOX

To complete the calibration, you need to start with a point optimization to determine whether to
use Pilot Injection at each operating point. You use the results of this point optimization to set up
the sum optimization to optimize fuel consumption over the drive cycle, and meet these
constraints:

¢ Constrain total NOx

* Constrain turbocharger speed

Optimization

* Constrain smoothness of tables
Select the BSFC_PointOpt optimization to view the setup.

View the two objectives in the Objectives pane. These are set up to minimize BSFC and
PEAKPRESS. Double-click an objective to view its settings.

Objectives

Mame Description Type
A BSFC BSFC{MAINSOI, PLOTDELTASOI, PILOTFMF, FUELPRESSDELTA, EGRPOS, VGTPOS, SPEED, TACMD, PilotMode) Minimize
My PEAKPRESS | PEAKPRESS(MAINSOI, PILOTDELTASOI, PILOTFMF, FUELPRESSDELTA, EGRPOS, VGTPOS, SPEED, TQCMD, PilotMode) Winimize

Observe that the Constraints pane shows a boundary model constraint.

Learn the easiest way to set up an optimization like this by selecting Tools > Create
Optimization from Model.

4\ Create Optimization from Model — >

Model
Select a model to minimize or maximize.

Model Type “ariable Inputs

ﬁ' BSFC Composite model MAINSOI, PILOTDELTASOL, ...
ﬁ' NOXFLOW Composite model | MAINSOI, PILOTDELTASOL, ...
ﬁ' EXHTEMP Composite model | MAINSOI, PILOTDELTASQOI, ...
ﬁ' VGTSPEED Composite model | MAINSOI, PILOTDELTASOL, ...
ﬁ:‘ PEAKPRESS Composite medel | MAINSOI, PILOTDELTASOL, ...
ﬁ' AFR Composite medel | MAINSOI, PILOTDELTASOL, ...
ﬁ TOTALFUELMASS Composite medel | MAINSOI, PILOTDELTASOL, ...
@VGTSF‘EEDNurm Function model MAINSOI, PILOTDELTASOI, ...

Create operating point data set

Cancel < Back Mext = Finish

Select the model BSFC and the Create operating point data set check box, and click Next.

Observe that the default settings will create a point optimization to minimize BSFC at the model
operating points, using six free variables and not SPEED, TQ, or Mode, and constrained by a
model boundary constraint.

4-33

4 Multi-Injection Diesel Calibration

4| Create Optimization from Model — >

Optimization
Choose optimization type and =elect free variables to optimize BSFC.

Algorithm: frincon A
Objective type: Maximize v Point o
Data source: Unigue operating points =~ ~
Free variables: Variable
Lz X MAINSOI

X PILOTDELTASOI

X PILOTFMF

X FUELPRESSDELTA

X EGRFOSZ

X VGTPOS

[]x sPEED

x 10

[]x Mode

Add a model boundary constraint

Cancel <« Back Mext = Finish

8 You want the optimization to identify which pilot mode (active pilot injection or no pilot injection)
is best to use at each operating point. To do this, you must select Modal optimization from

the Algorithm list.

9 You want to include Mode as a free variable, so the optimization can identify which mode is best
to use at each operating point. From the Free variables list, select the check box to include

Mode.

4-34

Optimization

10
11

4

Optimization
Choose optimization type and =elect free variables to optimize BSFC.

Algorithm: Meodal optimization A
Objective type: Minimize: ~ | Point o
Data source: Unigue operating points =~ ~
Free variables: Variable
T selected v MAINSOI

X PILOTDELTASOI

X PILOTFMF

X FUELPRESSDELTA

X EGRFOSZ

[+] x vaeTPOS

[]x sPEED

x 10

X Mode

Add a model boundary constraint

Cancel <« Back Mext = Finish

Click Finish to create the new optimization.

Compare your new optimization with the example BSFC_PointOpt. Notice the example has a
second objective, to minimize PEAKPRESS. To see how to set this up, right-click the Objectives
pane and select Add Objective.

Examine the Point Optimization Results

The example file CI MultiInject.cag shows the results of the multistage process to finish this
calibration.

1

Expand the first optimization node, BSFC_PointOpt, and select the output node underneath,
BSFC PointOpt Output.

Select View > Selected Solution (or the toolbar button) to view which mode the optimization
selected as best at each operating point. The left-hand pane provides all optimization results. The
right-hand pane provides the results for the current run.

4-35

4 Multi-Injection Diesel Calibration

E Current run: 195 Current mode: = Selected mode: 12 ?E Type: Modal
All Optimization Results Current Result - Optimization Solution
Results Contour || X Objective Contours 8| X%
X-axis: |SPEED Y-axis: |TQ ~ Z-axis: |Mode v) Checie == C ¥
—= ;
18 ‘ﬁ"b 7o
a5})
‘_')
250 = 1 18 = R 250
al
a5h
200 F O | 200
g 3
a & 150
el (| | o 25t 240 <
2r 100
= = =]] \
100 1 1| = 280
50
m o o o = o 1 b e 250
sl i’ asl b (280 . 260, 419
02 03 04 05 08 o7 08
B —= = = = il VGTPOS
1000 1500 2000 2500 3000
SPEED X-axis: |VGTPOS ~ Y-axis: |[EGRPOS ~
Optimization Results B m X Constraint Summary Bm X
) - Name Description Constrai
fecioadsplaylingnaty) Fxpanded vericaly g BSFC_Boundary |Boundary constraint of BSFC(MANSO, PILOTDELTASOI, PILOTFMF, F... R
Run |G Accept| Mode | MAINSOI | PILOTDE... | PILOTFMF | FUELPRE...| EGF
12 | 1 -2.236] 6.519) 0.085 25762 ~
13 F| 2 -3.374| 8.487) 0.08 279
14 o 2 -4.687| 8.536 0.079) 8.994
15] 2 -3.882 8487 0.08 26771
16] 2 -4638 8475 0.08 25,493
17] 2 -5.458| 8.475) 0.08 27.099)
18] 2 -4 26| 8475 0.08 27 275
19] 1 -8.065 .84 0.065 27.023 < >
20 | 1 -7.939 11.872 0.082 10.253] -
= o > 221 455 0.08 5654 Free Variable Values 80 X
2 @ 2 _6.909 5.475 0.08 25739 Mode 1
3] 2 471 8558 0.08 26981 MAINSOI 808519708445
YR 5 Ty Py 008 316 PILOTOELTASOI 3.84020084514
= 5] 5 K; 1' 7 1'3 = u-u 3 p 3'334 PILOTFMF 0.0651802590468
= 5] p _4:313 13_3'34 0.634 p 3:205 FUELPRESSDELTA 27.0233839965
27] 2 5876 8475 0.08 28723 EGRPOS 3.62381366783
28 = 2 -6.659| 8.475) 0.08 -8.74 VGTPOS 0.686447526008
29 " 2 -6.335] 8.475) 0.08 27382
30 | 2 -5.579 8.475 0.08 19.202
H] 2 5871 8475 0.08 25,993 v
3 Review the Results Contour plot to see which mode has been selected across all operating points.
Use this view to verify the distribution of mode selection.
4 Click to select a point in the table or Results Contour, and you can use the Selected solution
controls at the top to alter which mode is selected at that point. You might want to change
selected mode if another mode is also feasible at that point. For example, you can change the
mode to make the table more smooth.
5 Use the other objectives to explore the results. For example, you might want to manually change

4-36

the selected mode based on an extra objective value. It can be useful to view plots of the other
objective values at your selected solutions. To display another plot or change the view, right-click
the plots to view the options.

For example, right-click the Objective Contours plot. Select Current View > Objective Graphs.

Optimization

Current run: 19/ Current mode: 12 Selected mode: 13 ?_E] Type: Modal
All Optimization Resultz Current Result - Optimization Solution
Results Contour #/m| X Objective Graphs EIETES
X-axis: |SPEED Y-axis: | TQ ~ Z-axiz: |Mode ~ 280 B | RN 1 8 TR CT T M BE N
= — 2
19 260
250 [] 18 E
m 240 1 1
17
4 \. ll \
200 F = 18 220 N =
12 — T v T 1 T T
2 =
150 [11 |
5] = 5] = = ' f oy I N 1 T} /
= L1 g
™ . £, NV amin
o
m]] =]] 11 8 1 1 1
50 1 T E— E— E—
L | = | L -l - | A - - —x_ —~_ — — —
B 000 1500 2000 Ss00 = 00 & 1152 | -10 0O 2 814 o1 | o 24 | 0206
SPEED Mode MAINSO! _OTDELTAS PILOTFMF (LPRESSDE EGRPOS | WGTPOS
6 To see both solutions for a particular operating point, use the Pareto Slice view. You can inspect

the objective value (and any extra objective values) for each solution. If needed, you can
manually change the selected mode to meet other criteria, such as the mode in adjacent
operating points, or the value of an extra objective.

For details on tools for choosing a mode at each operating point, see “Analyzing Modal Optimization
Results”.

Create Sum Optimization from Point Optimization

The point optimization results determine whether to use pilot injection at each operating point. When
you are satisfied with all selected solutions for your modal optimization, you can make a sum
optimization over all operating points. The pilot injection mode must be fixed in the sum optimization
to avoid optimizing too many combinations of operating modes.

The results of the point optimization were used to set up the sum optimization to optimize fuel
consumption over the drive cycle. To see how to do this:

1

From the point optimization output node, BSFC_PointOpt Output, select Solution > Create
Sum Optimization.

The toolbox automatically creates a sum optimization for you with your selected best mode for
each operating point. The create sum optimization function converts the modal optimization to a
standard single objective optimization (fmincon algorithm) and changes the Mode Variable to
a fixed variable.

Compare your new optimization with the example sum optimization, BSFC_ SumOpt. The example
shows you need to set up more constraints to complete the calibration.

4-37

4 Multi-Injection Diesel Calibration

Constraints

Name

(4 BSFC_Boundary
E NOxSum

B vGTSpeedMax
B Wains01_wPilt
B4 Mains01_noPiiot
I £cRPOS_wPilnt
4 £GrPOS_noPiot

E FuelPressDelta_w...
E FuelPressDelta_n...

I veTPOS wPint
i vGTPOS noPilnt

{4 PiotDetas0l_wPiot

B PilctFMF_wPilat

Description

Boundary constraint of BSFC(MAINSOI, PILOTDELTASOI, PI...
Weighted sum of NOXFLOW(MAINSOI, PILOTDELTASOL, PI...
VGTSPEEDNorm(MAINSOI, PILOTDELTASQOI, PILOTFMF, FU...

Gradient constraint of MAINSOI over (SPEED, TQ)

Gradient constraint of MAINSOI| over (SPEED, TQ)

Gradient constraint of EGRPOS over (SPEED, TQ)

Gradient constraint of EGRPOS over (SPEED, TQ)

Gradient constraint of FUELPRESSDELTA over (SPEED TQ)
Gradient constraint of FUELPRESSDELTA over (SPEED TQ)
Gradient constraint of VGTPOS over (SPEED, TQ)

Gradient constraint of VGTPOS over (SPEED, TQ)

Gradient constraint of PILOTDELTASCI over (SPEED, TQL)
Gradient constraint of PILOTFMF over (SPEED, TQ)

Type

Wodel

Sum Constraint
Model

Table Gradient
Table Gradient
Table Gradient
Table Gradient
Table Gradient
Table Gradient
Table Gradient
Table Gradient
Table Gradient
Table Gradient

Application Point Set

PilotActive(SPEED, TQ;M....
Pilotinactive(SPEED,TQ;...
PilotActive(SPEED, TQ;M....
Pilotinactive(SPEED, TQ;...
PilotActive(SPEED, TQ;M....
Pilotinactive(SPEED, TQ;...
PilotActive(SPEED, TQ;M....
Pilotinactive(SPEED, TQ;...
PilotActive(SPEED, TQ;M....
PilotActive(SPEED, TQ;M....

The additional constraints make the optimization meet these requirements:

e Constrain total NOx

* Constrain maximum turbocharger speed

* Constrain smoothness of tables with gradient constraints

3 Import all required constraints to your new optimization by selecting Optimization >

Constraints > Import Constraints. Select the example sum optimization and import all but the

first boundary model constraint.

4 Double-click the additional constraints to open the Edit Constraint dialog box and view the setup.

This sum constraint controls the total NOx.

o

u Edit Constraint

(=] O w3

Constraint type: Sum Constraint - ASum u:u?-nstraint provides a u:u:uns.,traint distance value . z
. for & weighted sum of a model with reference to & bound f‘#

Constraint name: |NOxSum

Input model: Constraint type:

Constraint Type -

ﬁ:’ BSFC Composite model

ﬁ* NOXFLOW Composite model Constraint bound:

47 EXHTEMP Composite model 0,85~

4 VGTSPEED Composits model

4% PEAKPRESS

4 AFR

4 TOTALFUELMASS
i# VGTSPEEDNOrm

Constraint description:

Composite model
Composite model
Composite model
Function model

Weighted sum of NOXFLOW(MAINSOI, PLOTDELTASOI, PILOTFMF, FUELPRESSDELTA,

EGRPOS, WGTPOS, SPEED, TQCMD, PilotMode) == 0.85

[0K H Cancel H Help

4-38

This constraint controls maximum turbocharger speed.

Optimization

5

u Edit Constraint

Constraint name: | VGTSpeedMax

Input moedel:
Wodel Type
ﬁ:‘ BSFC Composite model
$ NOXFLOW Composite model
45 EXHTEMP Composite model
$’ WGTSPEED Composite model Constraint type:
ﬁ? PEAKPRESS Composite model %= =]
ﬁ' AFR Composite model
$ TOTALFUELMASS Composite model
{4} VGTSPEEDNorm Function model
Evaluate quantity; |Evaluation value -

E=N(ECR =

Constraint type: Model v' Model constraints keep anly points where the output value [,
of an expression is above, below or egual to the specified limit. %

Constraint bound:
@ Constant: 1=
") CAGE item:

Show models

Model Type

f BERL GEOMPOSIENTOR »
4 oLy Compositemo.|
f E =M COmposie Mo
4 veisrEeD Composie mo...

47 pELKPRERE Composte mo...|
i

Evaluation value

SPEED, TQCMD, PilotMode) <= 1

Constraint description: VGTSPEEDNorm{MAINSOI, PLOTDELTASOI, PILOTFMF, FUELPRESSDELTA, EGRPOS, WGTPOS,

Cox] [Cemen) []

Observe that this constraint does not use the VGTSPEED model directly, but instead uses a
function model VGTSPEEDNorm. You can examine this function model in the Models view. The
function model scales the constraint to help the optimization routines, which have problems if

constraints have very different sizes. VGTSPEED is of order of 165000, while the other

constraints are of the order of 1, so the function model VGTSPEEDNo rm normalizes VGTSPEED by

dividing it by 165000.

The following constraint controls the gradient across the MAINSOTI table.

u Edit Constraint

Constraint name: MainS01 wPilot

Constraint type: Table Gradient - | Atsble gradient constraint aims to constrain a variable or mode!
such that its gradient owver a table lies between specified bounds. -v
3

E=N(ECR =%

1

Show variables x| Table row: SPEED = Table column: | TQCWMD x|
Name Type Maximum change in constrained guantity:
o MAINSOI Variable Axis Maximum change Axis value change
X PILOTDELTASOI Variable SPEED 13 [=]| 2452
X PILOTFWF Variable TacMp 13 gl 2605
X FUELPRESSDELTA Variable Enter [a b] for maximum decrease and increase
X EGRPOS Variable T ——
X VGTPOS Variable RS,
Axis Axis breakpoints
SPEED |300:245:3250 =]
TacMD |30:26:200 O
Import From Table ... x|
Constraint description: |Gradient constraint of MAINSO| over (SPEED, TQCMD)
’ oK] [Cancel] ’ Help]

In the Optimization view, in the Constraints pane, observe that:

* The gradient constraints are in pairs, one with pilot and one with no pilot. Separate table
gradient constraints are required for different modes because the goal is to fill separate

tables for each mode.

» All the gradient constraints have an entry in the Application Point Set column.

4-39

4 Multi-Injection Diesel Calibration

4-40

Constraints

MName Description Application Point Set Sl
. BSFC_Boundary Boundary constraint of BSFCIM. ..

. NOxSum Weighted sum of NOXFLOWIM. ..

i voTspeedMax
MainS0|_wPilot
i 1ains0l_nopiot

WETSPEEDNorm(MAINSOI, PILO. ..
Gradient constraint of MAINSOI ...
Gradient constraint of MAINSQI ...

Pilot&ctive(SPEED, TQC...
Pilotinactive(SPEED,TQ...

il§ £cRPos_wPilot

Gradient constraint of EGRPOS ...

Pilot&ctive(SPEED, TQC...

il§ ccRPos_noPilot

Gradient constraint of EGRPOS ...

Pilotinactive(SPEED, TQ...

. FuelPrezsDelta_w ...

Gradient constraint of FUELPRE...

Pilot&ctive(SPEED, TQC...

. FuelPrezsDelta_n...

Gradient constraint of FUELPRE...

Pilotinactive(SPEED, TQ...

il veTPos_wPilst

Gradient constraint of WGTPOS ...

Pilot&ctive(SPEED, TQC...

il vcTPos_noPilot

Gradient constraint of WGTPOS ..

Pilotinactive(SPEED,TQ...

B raimwmmo maea e o a i s FEoLA i e Ten

Right-click the table gradient constraint MainSOI_wPilot and click Select Application Point
Set to see how these are set up.

Bl elect Application Point Set E=n E=R<
Select an existing data set to use as an application point set or create a new ene from the eptimization point
set.

Data set: Pilot4ctive - & Application Point Set
TrhEe A Optimization Point Set
300
Interpalate for each mode : :D
| SPEED Tacuo e 250 n . -.n . m
gl 1208 247 1 - i F T o T < TN & SO U |
E 1817 180/ 1|3 g : : : : :
3 FP. T & T < T & T & 3
1617 203 1 | 8 150 oo AR AR 4
& 1817 247 1 Sl PO E o Eome
G| 1617 290 1 XX XX X om
7 2025 117 1 - I R L RIS R e
;“| 0 | » XX X X X XX
0 H i i ; i
Number of points: 15 500 1000 4500 2000 2500 3000 3500
SPEED
[0K] [Cancel] [Help]

Observe the Interpolate for each mode option is selected. This application point set restricts
the table gradient constraint to Mode 1 (active) points only. You can create an application point
set like this by selecting New subset and then choosing a subset of the optimization points by
clicking in the plot or table. The application points here correspond to the operating points where
the point optimization determined that the pilot mode should be active (Mode = 1). For
comparison, here is the results contour plot for the point optimization results.

Optimization

Rezults Contour
X-axis: |SPEED ~ Y-axis: |TQ ~ Z-axiz: |Mode
T T . T T T
250 - = .
200 F a -
2 =
150 .
O O O O O
100 .
= = = = =
50 -
—{=t =t = = il
1000 1500 2000 2500 3000
SPEED

8 th X

118

118

117

916

15

14

13

12

11

8 Compare the results contour plot with the application points for the next table gradient
constraint, MainSOI_noPilot. These application points restrict the table gradient constraint to
Mode 2 points only, where the pilot is inactive.

set.

Data set:

Pilotinactive

Pilotinactive

Interpolate for each mode

u Select Application Point 5et

=
5
2
=2
@
a
2
=
2
i
s
o

SPEED TQCWMD | PiotMode

800 30 2 .
800 73 2[5
& 1208 30 2
? 1208 73 2
¥ 1208 117 2
I 1208 180 2
4 | T F

TQCMD

[E=N(ECR ==

Select an existing data set to use as an application peint set or create a new ene from the eptimization point

& Application Point Set
X Optimization Point Set

300

A
50 b xxx
00b------ Gxxx i
IR .
ool S ELE KX X
oono@m o oooH X
sol-oon o A
je RN e B o B © B o SRS o S o

0 L i
500 1000 1500 2000
SPEED

2500 3000 3500

’ oK

| [Ccancet | [_ser_]

Your sum optimization now contains all the required constraints and is ready to run. Next, view the
results in the example sum optimization.

Fill Lookup Tables from Optimization Results

CAGE remembers lookup table filling settings. To view how the example tables are filled:

4-41

4 Multi-Injection Diesel Calibration

1 Expand the example sum optimization node BSFC_SumOpt and select the BSFC_SumOpt Output
node.

2 Select Solution > Fill Lookup Tables (or use the toolbar button) to open the Lookup Table
Filling from Optimization Results Wizard.

On the first screen, observe all the tables in the CAGE tables to be filled list. Click Next.

4 On the second screen, observe all the tables are matched up with optimization results to fill them
with. Click Next.

4. Lockup Table Filling from Optimization Results Wizard - O X
Optimal Result Selection

Choose the optimization results that you want to fill each lookup table with.

Lockup tables values to be filled:

CAGE Lookup Table Fill with Tradeoff Optimization Results
% WANSOI_wPiot(SPEED_.. MAINSOI - Piot_Tradeoff 'y U MAINSOI

1% PILOTDELTASOI wPist(...| X PILOTDELTASOI DS Pibt_Tradeoff X PILOTDELTASOI
Q PILOTFMF_w Pilot(SPEED...| X PILOTFMF 28 Piot_Tradeoff X PILOTFMF

i’.? FUELPRESSDELTA_wPi...| X FUELPRESSD... B4 Piot_Tradeoff 4 X FUELPRESSDELTA
Q EGRPOS_wPilot(SPEED_...| x EGRPOS 25 pilot_Tradeoff X EGRPOS

% vGTPOS_wPiot{SPEED... | X VGTPOS 25 Piot_Tradeoff X VGTPOS

1@ PilotMode_Table(SPEED_...| X Mode ES Pilot_Tradeoff X SPEED

Q TOTALFUELMASS_wPil.. ﬁ TOTALFUELW... B3 Pilot_Tradeoff v X TQ

X Mode

Normalizer inputs: ﬁ’ AFR

Normalizer Input ﬁ:‘ BSFC

|/ SPEED_norm \ SPEED A 4 ExHTEMP

i_J_ TQ_norm X TQ J ﬁ‘ NOXFLOW

i_J_ SPEED_OpPoints X SPEED ﬁ? PEAKPRESS

{./ T0 OnPnints Y T N 4 TATa FUF MaGS

Cancel < Back Finish

5 On the third screen, observe how some tables have a Filter Rule set up so that they are filled
only with results where Mode is 1 or 2. You can create a filter rule like this by entering Mode==

in the Filter Rule column.

ry Lockup Tabkle Filling from Optimization Results Wizard

Fill Algorithm
Set up lockup table filing algorithm.

Fill Method: | Extrapolate Fil b

Use acceptable solutions only
Update tradeoffs

Fitter rules for lookup tables:

Use locked lookup table values in extrapolation
|:| Use existing extrapolation mask in fill

Table Output Column Fiter Rule Fitter Rule Inputs
% wANSOLwPiot| X MANSOI [1ode==1 |~ [x mamsol
% pLOTDELTAS...| X PILOTDELTASOI Mode==1 X PILOTDELTASOI
% pLOTFMF_w... | x PILOTFMF Mode==1 X PILOTFMF
1% FUELPRESSD... | X FUELPRESSD... | Mode==1 X FUELPRESSDELTA
1% £GRPOS_wPint| X EGRPOS Mode==1 X EGRPOS
% vGTPOS_wPiot| x vGTPOS Mode==1 X VGTPOS
% piotMode_Table| X Mode X SPEED
% ToTALFUELM... [TOTALFUELM... | Mode==1 x Ta
% wamso_nori.| x maNSOI Mode== X Mode
% pLoTDELTAS...| ¥ PILOTDELTASOI Mode==2 4 arr
A pLOTFMF_no... | X PLOTFMF Mode==2 v |$ Bsrc
Cancel < Back Next > Finish

4-42

Optimization

You can either click Finish to fill all the tables, or Cancel to leave the tables untouched. The
example tables are already filled with these settings.

These plots show results similar to the calibration results.

Pilot Mode Table

This graphic shows the plot of the table to select the active or inactive pilot mode depending on the
speed and commanded torque

You need to fill calibration tables for each control variable described in “Multi-Injection Diesel
Problem Definition” on page 4-2, in both pilot modes, active and inactive.

Following are all the pilot active tables.

4-43

4 Multi-Injection Diesel Calibration

EPEED% 3 B TQ

Total Injected Fuel Mass Table

4-44

Optimization

Fuel Pressure Delta Table

Exhaust Gas Recirculation (EGR) Valve Position Table

4-45

4 Multi-Injection Diesel Calibration

Pilot Injection Timing (Pilot SOI Delta) Table

4-46

Optimization

Pilot Fuel Mass Fraction Table

Examine the Multiobjective Optimization

The example file CI MultiInject.cag also shows an example multiobjective optimization. This can
useful for calibrations where you want to minimize more than one objective at a time, in this case,
BSFC and NOX. The multiobjective optimization uses the gamultiobj algorithm.

1 Select the BSFC_NOX node to see how the optimization is set up. Observe the 2 objectives and
the optimization information: Multiobjective optimization using a genetic algorithm.

2 Expand the BSFC_NOX node and select the BSFC_NOX Output to view the results. To select the
view that you want to examine, right-click in the pane and select Current View. Select the view.

3 Examine the Pareto graphs. It can be useful to display the Solution Information view at the same
time to view information about a selected solution. You might want to select a dominated solution
(orange triangle) over a pareto solution (green square) to trade off desired properties.

4-47

4 Multi-Injection Diesel Calibration

selected 1= FE Type: Mutti-objective
Current Result - Optimization Solution
Objective Contours &t X
Objective: |BSFC ~
14
2ga EE 8 2 & 8 400
o 090 o o o ™
g 10
&S 300
5
=¥
5
9 200
B
100
4
2
R -2 0 2
MAINSOI
H-axis: |MAL. -axis: |PIL..
Constraint Summary 8o X
Name Description
BSFC_Boundary Boundary constraint of BSFC{MAINSOI, PILO
VGETSpeediax WGETSPEEDNorm(MAINSOI, PILOTDELTASOI,

Select the Sum_BSFC_NOX node to see how the sum optimization is set up. The sum optimization

was created from the point optimization results. Observe the 2 objectives and all the constraints.

.!l Current run: 1 : Current |1 :
All Optimization Results
Pareto Graphs Bt %
391
390
289
3 388 1
('S
7]
m
287
285
285
284
L
T T T i
55 6 65
NOXFLOW T
Optimization Results #m X
Vector display format: | Expanded vertically —~
Solution || Accept| MAINSOI | PILOTDE... | PILOTFN
1 & O 2381 5.838 0l A
2 [F] 2.581 5,968 0.
3 A O 2,383 5.767| 0.
4] 2606 5.028| 0.
5 [P 2579 5 983 0.
6 [F] 2.579 5,989 0.
7 [F] 2.581 5 968 0.
8 7] 2.398 5.765| 0.
9 7] 2.502 5 405 0.
10 |0 2.581 5.963| 0.
1 |al O 2.415 5.78| 0.0
12 |@ 2857 5 988 0.
13 |@ 2706 5.946| 0
14] 2.45 5.181] 0.
15 M 2.398 £.768| 00w
4
5

Expand the Sum_BSFC NOX node and select the Sum BSFC_NOX Output to view the results.

Tip Learn how MathWorks Consulting helps customers develop engine calibrations that optimally
balance engine performance, fuel economy, and emissions requirements: see Optimal Engine

Calibration.

4-48

https://www.mathworks.com/services/consulting/proven-solutions/optimal-engine-calibration.html
https://www.mathworks.com/services/consulting/proven-solutions/optimal-engine-calibration.html

Model Quickstart

5 Model Quickstart

Use a Two-Stage Model To Predict Engine Torque

5-2

This two-stage modeling example shows you how to create a statistical model of an engine that
predicts the engine brake torque as a function of spark, engine speed, load, and air/fuel ratio. One-
stage modeling fits a model to all the data in one process, without accounting for the structure of the
data. When data has an obvious hierarchical structure (as here), two-stage modeling is better suited
to the task.

The usual way for collecting brake torque data is to fix engine speed, load, and air/fuel ratio within
each test and sweep the spark angle across a range of angles. For this experimental setup, there are
two sources of variation. The first source is variation within tests when the spark angle is changed.
The second source of variation is between tests when the engine speed, load, and air/fuel ratio are
changed. The variation within a test is called local, and the variation between tests, global. Two-stage
modeling estimates the local and global variation separately by fitting local and global models in two
stages. A local model is fitted to each test independently. The results from all the local models are
used to fit global models across all the global variables. Once the global models have been estimated,
they can be used to estimate the local models' coefficients for any speed, load, and air/fuel ratio. The
relationship between the local and global models is shown in this block diagram.

Current selection : Build nevwy response madel
Local Local Model
Inputs Responzes
b b
1 » pS22 L
spark (=) [deq]
*» t [t If]

Global Global Model

ImpLst=

@ P Cuadratic
n (M) [rpm]
load (L) [ratia)
afr (A [%]

To get started with two-stage modeling, follow these workflow steps.

Workflow Steps Description

“Open the App and Load Data” on page 5-3 Set up your local and global models, select data
for modeling, and specify a response to be
modeled.

“Set Up the Model” on page 5-3 Start the toolbox and load and view some data for
modeling.

“Verify the Model” on page 5-5 Examine the model fit to the data by looking at
the local, global, and two-stage response models.

Use a Two-Stage Model To Predict Engine Torque

Workflow Steps Description

“Export the Model” on page 5-7 Export your completed model, for example, for

use in the CAGE part of the toolbox for
calibrating.

“Create Multiple Models to Compare” on page 5- |Useful methods for creating multiple different
8

models to search for the best possible fit to the
data.

Open the App and Load Data

In MATLAB, on the Apps tab, in the Automotive group, click MBC Model Fitting.

If you have never used the toolbox before, the User Information dialog box appears. If you want,
you can fill in any or all of the fields: your name, company, department, and contact information,
or you can click Cancel. The user information is used to tag comments and actions so that you
can track changes in your files (it does not collect information for MathWorks).

When you finish with the User Information dialog box, click OK.

The Model Browser window appears.

Load the example data file holliday.x1s:

4

In the Model Browser, click Import data.

In the Select data file to import dialog box, open the file holliday.x1s. The file is in the
<matlabroot>/toolbox/mbc/mbctraining folder.

The Data Editor opens.

View plots of the data in the Data Editor by selecting variables and tests in the lists on the left
side. Have a look through the data to get an idea of the shape of curve formed by plotting torque
against spark.

Use the editor to prepare your data before model fitting.
Close the Data Editor to accept the data and return to the Model Browser.

This data is from Holliday, T., “The Design and Analysis of Engine Mapping Experiments: A Two-Stage
Approach,” Ph.D. thesis, University of Birmingham, 1995.

Set Up the Model

Specifying Model Inputs

You can use the imported data to create a statistical model of an automobile engine that predicts the
torque generated by the engine as a function of spark angle and other variables.

In the Model Browser, click Fit Models.

In the Fit Models dialog box, observe that the Data Object you imported is selected in the
Data set list.

Click the Two-Stage test plan icon in the Template pane.

In the Inputs and Responses pane, select data channels to use for the responses you want to
model.

5 Model Quickstart

-«

Data

Data set holliday bl T

The model you are building is intended to predict the torque generated by an engine as a
function of spark angle at a specified operating point defined by the engine speed, air/fuel ratio,
and load. The input to the local model is therefore the spark angle, and the response is torque.

The inputs to the global model are the variables that determine the operating point of the system
being modeled. In this example, the operating point of the engine is determined by the engine
speed in revolutions per minute (rpm - often called N), load (L), and air/fuel ratio (afr).

a Select spark in the Data channels list and click the button to add it to the Local inputs
list.

b Select n, load, and afr in the Data channels list and click the button to add them to the
Global inputs list.

Validationd.. <none= v

Percentage of data to use for validati... 20

Template

f l‘__Ji Browse...

One-Stage Point-by-Point| Two-Stage Template

Default

Inputs and Responses

Responses Data channals

> |

lear
élogno
ta

i 1l

Fit boundary model
ﬂ Use default models for large data

Local inputs

spark |

i1l 3

(¥

Global inputs

att |

load
n

Bl

|:| Open Data Editor on completion

Cancel Help

5 Leave the responses empty, and click OK.

The default name of the new test plan, Two-Stage, appears in the Model Browser tree, in the All
Models pane.

In this window, the left pane, All Models, shows the hierarchy of the models currently built in a tree.
At the start, only one node, the project, is in the tree. As you build models, they appear as child nodes

Use a Two-Stage Model To Predict Engine Torque

of the project. The right panes change, depending on the tree node selected. You navigate to different
views by selecting different nodes in the model tree.

Setting Up the Response Model

To achieve the best fit to torque/spark sweeps, you need to change the local model type from the
default. The type of a local model is the shape of curve used to fit the test data, for example,
quadratic, cubic, or polynomial spline curves. In this example, you use polynomial spline curves to fit
the test data. A spline is a curve made up of pieces of polynomial, joined smoothly together. The
points of the joins are called knots. In this case, there is only one knot. These polynomial spline
curves are useful for torque/spark models, where different curvature is required above and below the
maximum.

To change from the default models and specify polynomial spline as the local model type,

1 In the Model Browser, select the test plan node Two-Stage, and in the Common Tasks pane,
click Fit Models. A dialog box asks if you want to change all the test plan models. Click Yes.
In the Fit Models Wizard, click Next to continue using the currently selected data.

The next screen shows the model inputs you already selected. Click Next

To choose the response, on the Response Models screen, select tq and click Add.

a A W N

Edit the Local model type by clicking Set Up.
The Local Model Setup dialog box appears.

a Select Polynomial spline from the Local model class list.
b Edit the Spline Order Below knot to 2, and leave Above knot set to 2.
¢ Click OK to close the dialog box.

6 Select Maximum under Datum. Only certain model types with a clearly defined maximum or
minimum can support datum models.

7 Click Finish.
The Model Browser calculates local and global models using the test plan models you just set up.

Notice that the new name of the local model class, PS (for polynomial spline) 2, 2 (for spline order
above and below knot) now appears on a new node in the tree in the All Models pane, called PS22.

Verify the Model

Verifying the Local Model

The first step is to check that the local models agree well with the data:

1 Ifnecessary, select PS22 (the local node) on the Model Browser tree.

The Local Model view appears, displaying the local model fitting the torque/spark data for the
first test and diagnostic statistics that describe the fit. The display is flexible in that you can drag,
open, and close the divider bars separating the regions of the screen to adjust the view.

2 View local model plots and statistics. The Sweep Plot shows the data being fitted by the model
(blue dots) and the model itself (line). The red spot shows the position of the polynomial spline
knot, at the datum (maximum) point.

3-5

5 Model Quickstart

Look for problem tests with the RMSE Plots. The plot shows the standard errors of all the tests,
both overall and by response feature. Navigate to a test of interest by double-clicking a point in
the plot to select the test in the other plots in the local model view.

In the Diagnostic Statistics plot pane, click the Y-axis factor pop-up menu and select
Studentized residuals.

Scroll through local models test by test using the Test arrows at the top left, or by using the
Select Test button.

Select Test 588. You see a data point outlined in red. This point has automatically been flagged as
an outlier.

Right-click the plot and select Remove Outliers. Observe that the model is refitted without the
outlier.

Both plots have right-click pop-up menus offering various options such as removing and restoring
outliers and confidence intervals. Clicking any data point marks it in red as an outlier.

You can use the Test Notes pane to record information on particular tests. Each test has its own
notes pane. The test numbers of data points with notes recorded against them are colored in the
global model plots, and you can choose the color using the Test Number Color button in the Test
Notes pane. Quickly locate tests with notes by clicking Select Test.

Verifying the Global Model

The next step is to check through the global models to see how well they fit the data:

1

Expand the PS22 local node on the Model Browser tree by clicking the plus sign (+) to the left of
the icon. Under this node are four response features of the local model. Each of these is a feature
of the local model of the response, which is torque.

Select the first of the global models, knot.

You see a dialog box asking if you want to update fits, because you removed an outlier at the local
level. Click Yes.

The Response Feature view appears, showing the fit of the global model to the data for knot.
Fitting the local model is the process of finding values for these coefficients or response features.
The local models produce a value of knot for each test. These values are the data for the global
model for knot. The data for each response feature come from the fit of the local model to each
test.

Use the plots to assess model fits.

Select the response feature Bhigh 2. One outlier is marked. Points with an absolute studentized
residual value of more than 3 are automatically suggested as outliers (but included in the model
unless you take action). You can use the right-click menu to remove suggested outliers (or any
others you select) in the same way as from the Local Model plots. Leave this one. If you zoom in
on the plot (Shift-click-drag or middle-click-drag) you can see the value of the studentized
residual of this point more clearly. Double-click to return to the previous view.

Select the other response features in turn: max and Blow 2. You see that Blow 2 has a
suggested outlier with a very large studentized residual; it is a good distance away from all the
other data points for this response feature. All the other points are so clustered that removing
this one could greatly improve the fit of the model to the remaining points, so remove it.

Use a Two-Stage Model To Predict Engine Torque

Creating the Two-Stage Model

Recall how two-stage models are constructed: two-stage modeling partitions the variation separately
between tests and within tests, by fitting local and global models separately. A model is fitted to each
test independently (local models). These local models are used to generate global models that are
fitted across all tests.

For each sweep (test) of spark against torque, you fit a local model. The local model in this case is a
spline curve, which has the fitted response features of knot, max, Bhigh 2, and Blow 2. The result
of fitting a local model is a value for knot (and the other coefficients) for each test. The global model
for knot is fitted to these values (that is, the knot global model fits knot as a function of the global
variables). The values of knot from the global model (along with the other global models) are then
used to construct the two-stage model

The global models are used to reconstruct a model for the local response (in this case, torque) that
spans all input factors. This is the two-stage model across the whole global space, derived from the
global models.

After you are satisfied with the fit of the local and global models, it is time to construct a two-stage
model from them.

1 Return to the Local Model view by clicking the local node PS22 in the Model Browser tree.
2 To create a two-stage model, click Create Two-Stage in the Common Tasks pane.

Comparing the Local Model and the Two-Stage Model

1 Now the plots in the Local Model view show two lines fitted to the test data. Scroll though the
tests using the left/right arrows or the Select Test button at the top left. The plots now show the
fit of the two-stage model for each test (green circles and line), compared with the fit of the local
model (blue line) and the data (blue dots). Zoom in on points of interest by Shift-click-dragging
or middle-click-dragging. Double-click to return the plot to the original size.

Compare how close the two-stage model fit is to both the data and the local fit for each test.

Notice that the local model icon has changed (from the local /8 icon showing a house, to a two-

stage icon % showing a house and a globe) to indicate that a two-stage model has been
calculated.

Response Node

Click the Response node (tq) in the Model Browser tree.

Now at the Response node in the Model Browser tree (tq), which was previously blank, you see plots
showing you the fit of the two-stage model to the data. You can scroll through the tests, using the

arrows at top left, to view the two-stage model against the data for groups of tests.

You have now completed setting up and verifying a two-stage model.

Export the Model

All models created in the Model Browser are exported using the File menu. A model can be exported
to the MATLAB workspace, to CAGE, or to a Simulink model.

5-7

5 Model Quickstart

Click the tq node in the model tree.

Choose File > Export Models. The Export Model dialog box appears.
For the Export to parameter, select the Simulink, Workspace, or CAGE.
Click OK to export the models.

A W N R

To import models into CAGE to create calibrations, use the CAGE Import Tool instead for more
flexibility.

Create Multiple Models to Compare
Methods For Creating More Models

After you have fitted and examined a single model, you normally want to create more models to
search for the best fit. You can create individual new models or use the Create Alternatives common
task to create a selection of models at once, or create a template to save a variety of model settings
for reuse.

To use the Model Template dialog box to quickly create a selection of different child nodes to
compare, click Create Alternatives in the Common Tasks pane. The following exercises show you
examples of these processes.

Creating New Local Models
To follow these examples, you need to create the initial models.

1 As an example, select the tq response node and click New Local Model in the Common Tasks
pane.

The Local Model Setup dialog box appears.

2 Selecta Polynomial Spline, and edit the spline order to 3 below the knot and 2 above. Click
OK.

A new set of local models (and associated response feature models) is calculated.

3 Return to the parent tq response node , and click New Local Model again, in the Common
Tasks pane.

4 Select a Polynomial with an order of 2 in the Local Model Setup dialog box. Click OK.
A new set of local models and response feature models is calculated.

Now you have three alternative local models to compare: two polynomial splines (order 3,2 and order
2,2) and a polynomial (order 2), as shown.

Use a Two-Stage Model To Predict Engine Torque

You can select the alternative local models in turn and compare their statistics. For an example,
follow these steps:

1 Select the new local model node PS32.
2 Select test 587 in the Test edit box.

3 In the Local statistics pane, observe the value of RMSE (root mean squared error) for the
current (ih) test.

The RMSE value is our basic measure of how closely a model fits some data, which measures the
average mismatch between each data point and the model. This is why you should look at the
RMSE values as your first tool to inspect the quality of the fit — high RMSE values can indicate
problems.

4 Now select the local model node POLY2 and see how the value of RMSE changes.

Observe that the shape of the torque/spark sweep for this test is better suited to a polynomial
spline model than a polynomial model. The curve is not symmetrical because curvature differs
above and below the maximum (marked by the red cross at the datum). This explains why the
value of RMSE is much lower for PS32 (the polynomial spline) than for the POLY2 (polynomial) for
this test. The polynomial spline is a better fit for the current test.

5 Look through some other tests and compare the values of RMSE for the different local models. To
choose the most suitable local model you must decide which fits the majority of tests better, as
there are likely to be differences among best fit for different tests.

6 To help you quickly identify which local models have the highest RMSE, indicating problems with
the model fit, check the RMSE Plots.

a Use the plot to help you identify problem tests. Use the drop-down menus to change the
display. For example, select s _knot to investigate the error values for knot (MBT), or RMSE
to look at overall error.

b You can navigate to a test of interest from the RMSE Plots by double-clicking a point in the
plot to select the test in the other plots.

7 Look at the value of Local RMSE reported in the Pooled Statistics pane on the right (this is
pooled between all tests). Now switch between the POLY2 and the PS32 local models again and
observe how this value changes.

8 You can compare these values directly by selecting the parent tq response node, when the Local
RMSE is reported for each child local model in the list at the bottom.

5-9

5 Model Quickstart

5-10

When all child models have a two-stage model calculated, you can also compare two-stage values
of RMSE here. Remember, you can see statistics to compare the list of child models of the
response node in this bottom list pane.

When comparing models, look for lower RMSE values to indicate better fits. However, remember that
a model that interpolates between all the points can have an RMSE of zero but be useless for
predicting between points. Always use the graphical displays to visually examine model fits and
beware of “overfitting” — chasing points at the expense of prediction quality. You will return to the
problem of overfitting in a later section when you have two-stage models to compare.

Adding New Response Features

Recall that two-stage models are made up of local models and global models. The global models are
fitted to the response features of the local models. The response features available are specific to the
type of local model. You can add different response features to see which combination of response
features makes the best two-stage model as follows:

1
2

Select the local model node PS32.

Select File > New Response Feature.

A dialog box appears with a list of available response features.
Select f(x+datum) from the list and enter -10 in the Value edit box. Click OK.

A new response feature called FX less10 is added under the PS32 local model. Recall that the
datum marks the maximum, in this case maximum torque. The spark angle at maximum torque is
referred to as maximum brake torque (MBT). You have defined this response feature (f (x
+datum)) to measure the value of the model (torque) at (-10 + MBT) for each test. It can be
useful to use a response feature like this to track a value such as maximum brake torque (MBT)
minus 10 degrees of spark angle. This response feature is not an abstract property of a curve, so
engineering knowledge can then be applied to increase confidence in the models.

Select the local node PS32, and click Create Two-Stage in the Common Tasks pane. The Model
Selection window opens, because you now need to choose 5 of the 6 response features to form
the two-stage model.

In the Model Selection window, observe four possible two-stage models in the Model List. This is
because you added a sixth response feature. Only five (which must include knot) are required
for the two-stage model, so you can see the combinations available and compare them. Note that
not all combinations of five response features can completely describe the shape of the curve for
the two-stage model, so only the possible alternatives are shown.

Close the Model Selection window and click Yes to accept one of the models as best.

Notice that the response features chosen to calculate the two-stage model are highlighted in
blue, and the unused response feature is not highlighted.

Select the tq response node to see a comparison of the statistics of both two-stage models (your
original PS22 and the new PS32).

Remember that the POLY?2 local model has no two-stage model yet; no two-stage statistics are
reported for POLY2 in the bottom list pane. You cannot fully compare the two-stage models until
every local model in the test plan has a two-stage model calculated.

To calculate the two-stage model for POLY2, in the Common Tasks pane, click Create Two-
Stage.

Use a Two-Stage Model To Predict Engine Torque

Comparing Models

1

Now you have three two-stage models. Select the tq response node and look at the statistics,
particularly Local RMSE and Two-Stage RMSE reported in the list of child models at the bottom.

* Look for lower RMSE values to indicate better fits.

* Look for lower PRESS RMSE values to indicate better fits without overfitting. PRESS RMSE is
a measure of the predictive power of your models.

It is useful to compare PRESS RMSE with RMSE as this may indicate problems with
overfitting. RMSE is minimized when the model gets close to each data point; “chasing” the
data will therefore improve RMSE. However, chasing the data can sometimes lead to strong
oscillations in the model between the data points; this behavior can give good values of RMSE
but is not representative of the data and will not give reliable prediction values where you do
not already have data. The PRESS RMSE statistic guards against this by testing how well the
current model would predict each of the points in the data set (in turn) if they were not
included in the regression. To get a small PRESS RMSE usually indicates that the model is not
overly sensitive to any single data point.

* Look for lower T2 values. A large T~ 2 value indicates that there is a problem with the
response feature models.
* Look for large negative log likelihood values to indicate better fits.

To compare all three two-stage models simultaneously, select Model > Selection Window. Here
you can see the same statistics to compare the models in the bottom list, but you can also make
use of a variety of views to look for the best fit:

* You can plot the models simultaneously on the Tests, Residuals and Cross Section views
(Shift- or Ctrl-click to select models in the list)

* You can view each model in the Response Surface view as a surface; movie, contour or
multiline plot, and as a table

You can select a model and click Assign Best in the Model Selection window, or double-click a

model to assign it as best.

When you close the Model Selection window and return to the Model Browser, the model you
selected as best is copied to the parent response node, tq.

Creating New Global Models

In this example, you have not yet searched for the best global model types. You would normally do
this before creating and comparing two-stage models. For the purpose of this tutorial, you have
already created two-stage models and used RMSE to help you identify better models. The principle is
the same at each level in the model tree: add new child models and choose the best. You can create
any number of child nodes to search for the best global model fit for each response feature in your
tree.

Select the local node POLY?2.

To create a selection of alternatives for each response feature node, in the Common Tasks pane,
click Build Global Models.

In the Model Template dialog box, click New, then click OK.

Observe the default list of a variety of model types, then click OK. It is worth trying the default
model settings for a quick exploration of the trends in the data.

In the Model Selection dialog box, leave the default selection criterion for automatically choosing
the best child node, and click OK.

5-11

5 Model Quickstart

5-12

The toolbox builds the models and selects the best using your selection criteria.

Note The toolbox automatically builds models in parallel if you have Parallel Computing Toolbox.

Assess all the fits in the Alternative Models list in case you want to choose an alternative as a
better fit.

Notice that the child node model assigned as best is highlighted in blue in the Alternative Models
list and the model tree. The local node has changed from the two-stage icon back to the local
model icon (a red house). This is because you have changed the response feature models, and so
you need to recalculate the two-stage model using the new global models for the response
features.

When you have chosen best global models for all your response features, you need to recalculate
the two-stage model.

When you have chosen a best model among alternatives, it can be useful to clean up the rejected
models by selecting Delete Alternatives in the Common Tasks pane. You can also select File >
Clean Up Tree. This deletes all rejected child models where best models have been chosen; only
the child nodes selected as best remain.

You can use the Model Template dialog box to create and save templates of model types you often
want to build. Creating a template containing a list of all the models you want is an efficient way to
quickly build a selection of alternative model child nodes for many global models. Use these
techniques to find models well suited to the data for each of your global models.

See Also

More About

“Fit a One-Stage Model”
“Two-Stage Models for Engines”
“Data Manipulation for Modeling”
“Gasoline Engine Calibration”
“Multi-Injection Diesel Calibration”

Generate Current Controller Calibration Tables for Flux-Based Motor Controllers

Generate Current Controller Calibration Tables for Flux-Based
Motor Controllers

Using the Model-Based Calibration Toolbox, you can generate optimized calibration tables for flux-
based motor controllers. This example shows how to import data, fit a model, and optimize the data
based on objectives and constraints.

Based on nonlinear motor flux data, the calibration tables optimize:

* Motor efficiency
* Maximum torque per ampere (MTPA)
» Flux weakening

The calibration tables are d- and g- axis reference currents as functions of motor torque and motor
speed.

To generate optimized current calibration tables, follow these workflow steps.

Workflow Steps Description

“Collect and Post Process Motor |Collect the nonlinear motor flux data from dynamometer testing
Data” on page 5-14 or finite element analysis (FEA). For this example, file
PMSMEfficiencyData.xlsx contains the data that you need:
e Total flux, ¥,,,,, in Wh

o Allowed flux, ¥,,,,, in Wb

* d-axis flux, ¥,, in Wh

* g-axis flux, ¥, in Wb

» (d-axis current, I, in A

* g-axis current, [, in A

* Current magnitude, I, in A

* Motor torque, T,, in N'm

* Motor speed, n, in rpm

5-13

5 Model Quickstart

Workflow Steps

Description

“Model Motor Data” on page 5-
16

Use a point-by-point model to fit the
PMSMEfficiencyData.x1lsx data. Specifically:

¢ Import data
* Filter and group data
» Fit model

The PMSM maximum efficiency calibration case study contains
the model fit.

Case Studies

Examplez

@ Dual CAM gazoline engine with =park optimiz...
43 Multi-injection diesel tested with pilot injection ...
E\ Cl Mapped Engine - Fuel Input

E\ Cl Mapped Engine - Torgue Input

E\ S| Mapped Engine - Torgue Input

@ PMSM maximum efficiency calibration L}

“Generate Calibration” on page 5-
20

Calibrate and optimize the data using objectives and constraints.
Specifically:

¢ Create functions.
¢ Create tables from model.
* Run an optimization.

* Generate and fill optimized current controller calibration
tables that are functions of motor torque and motor speed.

The PMSM maximum efficiency calibration case study contains
the calibration results.

Case Studies

Examples

@ Cual CAM gasoline engine with spark optimiz...
ﬁ Multi-injection diesel tested with pilot injection ...
E\ Cl Mapped Engine - Fuel Input

E\ Cl Mapped Engine - Torgue Input

E\ S| Mapped Engine - Torgue Input

@J PMEM maximum efficiency calibration I}

Collect and Post Process Motor Data

Collect this nonlinear motor flux data from dynamometer testing or finite element analysis (FEA):

5-14

Generate Current Controller Calibration Tables for Flux-Based Motor Controllers

* d- and g- axis current
* d- and ¢- axis flux linkage
* Electromagnetic motor torque

Use the collected data and motor speed to calculate the total flux, maximum flux, and current
magnitude:

Yiotal = /Wd? + W2
Is = 4ig2 +iq2

_ 60w,
N=Jnp

_ Ve
Ymax = m

The equations use these variables:

Ig, 1q d- and g- axis current, respectively

i, Current magnitude

v, ¥, d- and ¢- axis flux linkage, respectively
U,oiar YUinax Total and allowed flux, respectively

W, Electrical motor angular speed, rad/s
n Motor speed, rpm

Ve Inverter bus voltage

p Number of pole pairs

Finally, for each data point, create a file containing:

* Total flux, ¥, in Wh

» Allowed flux, ¥,,,, in Wb

» d-axis flux, ¥y, in Wb

* g-axis flux, ¥, in Wh

* d-axis current, I;, in A

* q-axis current, [, in A

* Current magnitude, I, in A
* Motor torque, T,, in N'm

* Motor speed, n, in rpm

For this example:

* Pole pairs, P, is 4
* Inverter bus voltage, Vg, is 500

the data file matlab\toolbox\mbc\mbctraining\PMSMEfficiencyData.xlsx contains the
motor flux data.

5-15

5 Model Quickstart

Model Motor Data

To model the motor data, use the MBC Model Fitting app to import, filter, and fit the data with a
point-by-point model. For this example, the data file PMSMEfficiencyData.xlsx contains a large
data set. You could consider using a design of experiment (DOE) to limit the data. However, the data
set represents typical FEA analysis results.

Since there is a simple relationship between the d- and g-axis currents for fixed torque-speed
operating points, the point-by-point model provides an accurate fit.

For comparison, the PMSM maximum efficiency calibration case study contains the model fit.

Case Studies

Examples

ﬁ Dual CAN gasoline engine with spark optimiz...
43 Multi-injection diesel tested with pilot injection ...
En Cl Mapped Engine - Fuel Input

En Cl Mapped Engine - Torgue Input

E\ Sl Mapped Engine - Torgue Input

@ PMSHK maximum efficiency calibration I,}

Import Data

For this example, PMSMEfficiencyData.x1sx contains this motor controller data:

* Total flux, ¥, in Wb

+ Allowed flux, ¥,,,,, in Wb

* d-axis flux, ¥,, in Wh

* g-axis flux, ¥, in Wh

» d-axis current, I;, in A

* q-axis current, [, in A

* Current magnitude, I, in A
* Motor torque, T, in N'm

* Motor speed, n, in rpm

In MATLAB, on the Apps tab, in the Automotive group, click MBC Model Fitting.
In the Model Browser home page, click Import Data. Click OK to open a data source file.

Navigate to the matlab\toolbox\mbc\mbctraining folder. Open data file
PMSMEfficiencyData.x1lsx. The Data Editor opens with your data.

5-16

Generate Current Controller Calibration Tables for Flux-Based Motor Controllers

[#] Data Editor - ex_motor_data — O *

File View Tools Window Help
L8 Buv: rasDoERELev|?
Summary Statistics Variables Filters Test Filters Test Notes

30472 /30472 racards
9+ 0 variablas
30472 /30472 tests

0 05 1 15 2 25 i a5 v
Comment

Source files

CAwork _mbclex motor data.xlsx

. Data remaining . Data removed . ‘ariables added

T
20 Data Plot 8 th x| Data Table Bt x|
Y-gxiz Flux Flux_allo... Flux_d Flux Id lg

Foc PN 1 ~
Flux_allowed 2 0.213 0.401 -0.219] 7751e-4| -293.378
j| Flux_d 3 0.213 0.401 -0.213] 7.842e-4| -287.755
E”"—“ 4 0.206 0.401 -0.206| 7.939s-4) 251633
' k 5 0.139 0.401 -0.199| B.041e-4| 27551
Mis 8 0.132 0.401 -0.192| 8.148e-4| -269.338
Trg 7 0.134 0.401 -0.184| B251e-4| -263.285
n = 8 0.177 0.401 -0.177] 8.38e-4| -257.143
=] 0.189 0.401 -0.169) 8.504e-4| -251.02
“ 10 0.181 0.401 -0.161| BB34e-4| -244338
i 2 11 0.154 0.401 0154 @769e-4| 238776
H-axis selecti.. iz 0.145 0.401 -0.145) 8911e-4| -232853
<nones » 13 0.138 0.401 0138 9.059e-4 775531
14 0.13 0.401 -0.13] 9.214e-4[220408
15 0.122 0.401 0.122) 9.378e-4 -2143235
18 0.114 0.401 -0.114| 0.54%e-4| -208.183
35 17 0.108 0.401 01068 9.73e-4 -202.041

o 18 0.033 0.401 -0.038 9.921e-4| -195.918 ¥

< >

| Data has 30472/30472 Records, 8 + 0 Variables, and 30472 Tests.

Filter Data

You can filter data to exclude records from the model fit. In this example, set up a filter to include
only flux and current magnitudes that are less than a specified threshold. Specifically:

* Current magnitude, I, less than or equal to 300 A.
¢ Total flux, ¥,,,, less than or equal to allowed flux ¥,,,,

1 In the Data Editor, select Tools > Filters to open the Filter Editor. Create these filters:
+ Is <= 300

* Flux <= Flux_ allowed

Summary Statistics Variables Filters (2] Test Filters Test Motes

Fitter Expression Rezultz
O Ig <= 300 Fitter successfully applied : 4121 records excluded.
ﬂ Flux <= Flux_allowed Fitter successfully applied : 22621 records excluded.

5-17

5 Model Quickstart

Define Test Groupings

For point-by-point models, you need to define test groups. In the example, define groups for motor
torque and speed. Set the tolerances to so that Model-Based Calibration Toolbox groups small
variations in torque and speed at the same operating point.

1 In the Data Editor, select Tools > Test Groups to open the Define Test Groupings dialog box.
Create groups for the motor torque and speed.

2 Set these tolerances:

* Motor torque, Trq, to 1.000
* Motor speed, n, to 10.000

4| Define Test Groupings — O x
‘fariable Iin Max Tolerance Group By M:?,_Tahm:
~
Trg 1.000 432274 1.000 Id
n 1720.000 6320.000 10.000

|:| One-stage data

|:| Sort records before grouping
|:| Show original test groups

s JlIE

Test number variable:

none =

214 tests dafnad
|||II| FII

= -
i | ’. I u | |||
1 (L] 1
lll | Illl |“ |I|| ||| ‘ ‘Il
.||I| y il e *r'*l"l'l"'"||| ||||||

0 1000 2000 3000 4000 5000 &000 Ta000 BOOD

Cancel Help

5-18

3 Inthe Data Editor, select File > Save & Close. Accept the changes to the data.

Fit Model

Fit the data to a point-by-point model with these responses, local inputs, and operating points:
* Responses

* q-axis current, [, in A

* Local inputs

+ d-axis current, I, in A

Generate Current Controller Calibration Tables for Flux-Based Motor Controllers

* Operating points

* Motor speed, n, in rpm
* Electromagnetic motor torque, T,, in N-m

1 In the Model Browser, select Fit Models.
2 In Fit Models, configure a Point-by-Point model with these responses and inputs.

Responses Local Inputs Operating Points
n
Template

One-5tage Point-by-Point Two-5tage Template:

Default
Inputs and Responses
Rezponzes [ata channelz
i ~ B Flux A~
Flux_allowed
B | |Flux_d
hd Flu=_g
. Iz
Fit boundary model
|:| Uze default models for large data
Local inputs
P | -
i
W
Operating point inputs
Trg A e
n
W g o

3 To fit the model, select OK. If prompted, accept changes to data. By default, the fit uses a
Gaussian Process Model (GPM) to fit the data.

4 After the fit completes, examine the response models for I,. The Model Browser displays
information that you can use to determine the accuracy of the model fit.

* In the Model Browser, select Ig. Examine the response surface and diagnostic statistics.
These results indicate a reasonably accurate fit. You can browse through each test to examine
the response for each torque-speed operating point.

5-19

5 Model Quickstart

5-20

4% Response Model: Ig
Test: |4m 1 = Select Test.. Model type: Gaussian Process Model (ARDSquaredExponential,Constant)

/@ Alternative Local Models

MName Observations | Parameters Box-Cox PRESS RMSE RMSE | Best Model
/2% GPM_ARDSquaredExpo... 49 22912 1 9.053e-5 1.23%e-5
Y Y
Response Surface #m x| | Diagnostic Statistics 8\m| X
Plot: Line 08 Iq - Tast1 5 107 Ig - Test 1
K-axis: |id e 9 ' [[[.
a7 . _ .
ol L]
08 : % . ° " % o i -.
Na.. | Walue | Tolerance - Py 200 e i-"a.."'n.. . o ."'
i |-293.877| Linkedto .| T 05 o 4 . . .
[L
04 . i
03 -5 ' ')) :
=300 -250 -200 -150 =100 50 0
0z Id [!
300 -200 -100 1]
W E] X-axis factor:|id [v -axis factor:|Residu...

5 Save your project. For example, select Files > Save Project. Save gs example.mat to the
work folder.

Generate Calibration

After you fit the model, create functions and tables, run the optimization, and fill the calibration
tables.

For comparison, the PMSM maximum efficiency calibration case study contains the calibration
results.

Case Studies

Examples

ﬁ Dual CAN gasoline engine with spark optimiz...
43 Multi-injection diesel tested with pilot injection ...
E\ Cl Mapped Enging - Fuel Input

En Cl Mapped Engine - Torgue Input

E\ Sl Mapped Engine - Torgue Input

i PMSM maximum efficiency calibration %

Import Models and Create Functions

Import models and create the functions to use when you optimize the calibration. In this example, set
up functions for:

Generate Current Controller Calibration Tables for Flux-Based Motor Controllers

L]

Current magnitude, I
* Torque per amp, TPA

1 [n MATLAB, on the Apps tab, in the Automotive group, click MBC Optimization.

2 Inthe Cage Browser, select Models. If it is not already opened, in the MBC Model Fitting
browser, open the gs _example.mat project.
] MBC Model Optimization
Generate optimal look-up tables for model-based calibration.
Create an optimization for a model and use results to fill lookup tables
Import Use models to generate calibration Export
Impaort statisfical - e e —
models to generate = main A
calibrations = DL -
: - @ K Ii |
Models Optimization sokup Tables and Tradec

Lookup Tables

Simulink Lockup Tables Feature Filling Data Set

3 In Import Models, click OK. Close the CAGE Import Tool.

Import Models to CAGE

These models wil be imported to CAGE when vou click OK.
If a model iz replaceable in CAGE you can select Replace or Create new in the Action column.
Double-click CAGE Model Name cells to edit names.

Original Name Action | CAGE Model Name
ﬁ I3 Create new M

4 In the Cage Browser toolbar, use New Function Model wizard to create these functions:

o Is = sqrt(Id"2 + Ig™2)
* TPA = Trq/Is

5-21

5 Model Quickstart

4 CAGE Browser - Untitled

File View Model Tools

&

Edit

NEWd| X Weg >

Window Help

P =

Lat"

Pm'}&_‘ SIiEE !New Function Modell_
* || Name | Tvoe [Inouts
4 Function Model Wizard — O x
Enter formula for function model (e.g. ratio = xhy):
s = sqr(id"2 + k5"2) |
4 Function Medel Wizard — O >
Assign Cage items to use as the model inputs:
Model Input Asgsigned Inp Available Inputs
III X Trg
X n
by
5
< >
[conce | [<mac | |03

5 In the Cage Browser, verify that the function models for I's and TPA have these descriptions.
Models
Name Type Inputs Lower Output Limit | Upper Output Limit | Description
‘: g Point-by-point ... | Id, Trg, n -Inf| Inf| Created by on 28-Mar-2019.
Iz Function model | Id, Ig -Inf Inf| sgri(ld"2 + Ig"2)
6 Select File > Save Project. Save gs_example. cag to the work folder.

Create Lookup Tables from Model

Create tables that the Model-Based Calibration Toolbox optimizers uses to store the optimized
parameters. For this example, the tables are:

* d-axis current, I;, as a function of motor torque, Trq, and motor speed, n.
* q-axis current, I, as a function of motor torque, Trq, and motor speed, n.

1 In the Cage Browser, select Lookup Tables and Tradeoff. In Create Lookup Tables from Model,
select Iq. Click Next.

5-22

Generate Current Controller Calibration Tables for Flux-Based Motor Controllers

4| Create Lookup Tables from Model — O ot

Model
Select a model to base the new lookup tables on.

Model Type “ariable Inputs
Point-by-point mo... | id, Trg, n

% Iz Function model i, Trg, n

%TF‘A Function model i, Trg, n

|:| Create operating point data zet

][> | e

P

In the Create Lookup Tables from Model wizard:

* Clear Use model operating points.
* Set Table rows to 31.

* Set Table columns to 29.

* Click Next.

4 Create Lookup Tables from Model — O et

Lookup Table Inputs
Select the lookup table inputs and set up the normalizers to use for all the new lookup

tables.
' [] Use model operating points
Rows ") input: Trg e Columnz (X} input. |n w
Mormalizer: <New= e MWormalizer: <New= v
Tabke courms: | 29+
- n normalizer:
Input Output Input Output
1 0| » 1720 0|
15.376 1 1884.285 1
25752 2 2043.571 2
44 127 3 2212857 3
53.503 4| W 2377143 4w
| Cancel | | < Back | | MNext = | Finizh

In Create Lookup Tables from Model:

5-23

5 Model Quickstart

5-24

* Select Id and Iq.
* Click Finish.

4\ Create Lockup Tables from Model

Lookup Tables

MNormalizers: Trg_norm_1,n_norm_1

ltem Lookup Table Mame
x i % 14_Table
ia % 1g_Table
Lookup table fill process
@ Optimization/Tradeoff
() Models
() Mone
Cancel < Back

— O >

Select the items to create lookup tables for. Select the lockup table fill process.

Table Bounds
[-293.878, 0]
[-Inf, Inf]

MNext > Finizh

4 In the CAGE Browser, examine the tables.

Tradeoffs

@ gs_example

=-B2 Ig_Tradeoff
=1 |d_Table

Run Optimization

In this example, run an optimization with these specifications:

* Current magnitude, I, less than or equal to 300 A.

* Maximizes torque per ampere, TPA.

1 On the Cage Browser home, select Optimization.

Generate Current Controller Calibration Tables for Flux-Based Motor Controllers

|4 CAGE Browser - Untitled

File Edit Tools Window Help

EREFELTE T
PliHomel

D Mew Project
= Open Project

Recent projects:

2 In Create Optimization from Model, select TPA and Next.

4\ Create Optimization from Model — O x

Model
Select a model to minimize or maximize.

Model Type “ariable Inputz
ﬁ (1] Point-by-point mo... [id, Trg, n
Is Function model id, Trg, n

Function model id, Trg, n

|:| Create operating point data set

Cancel < Back MNext = Finizh

3 In Create Optimization from Model:

* Select Id.

* Set Objective type to Maximize.
* Click Finish.

5-25

5 Model Quickstart

5-26

5

4 Create Optimization from Model — O >
Optimization
Choose optimization type and select free variables to optimize TPRA.
Algorithm: | frincon A |
Objective type: | Maximize §v|Pmm v|
Data source: |HI:H:|E| operating points - | e |
Free variables: Variable
1 selected v W

|:| X Trg

[Jxn
Add a model boundary constraint

e | [conex | s

Add the optimization constraint for the current magnitude, I;. In the CAGE Browser, select
Optimization > Constraints > Add Constraints to open Edit Constraint. Use the dialog box to

create a constraint on the current.

« Is <= 300
4 Edit Constraint — O x
Constraint type: Model o Model Dmstrmts keep only points where the output vaiue } =T,
of an expression is abowe, below or equal to the specified limit.
Input model: Constraint bound:
Model Type @ Constant: IE%
g Point-by-point ... O CAGE item:
Constraint E
- onstraint type Show models V|
-& TPA Function model s -
- Model Type
kY
W
Ewaluate quantity: | Ewvaluation value w | Evaluate quantity: | Evaluation value e |
Constraint description: ‘L"-(H. Trg, n) <=0
| OK | | Cancel | | Help |

In the Cage Browser, carefully verify the Objectives and Constraints.

Generate Current Controller Calibration Tables for Flux-Based Motor Controllers

Objectives | Common Tasks
MName De=zcription Type .

TPA(I, Trg, n} Maximize Add Constraint. ..

Set Up
< >
| Run...
Constraints |
Mame Description Type . View Results
. TRA_Boundary Boundary constraint of TPA(, Trg, n} Model
= L
Is(d, Trg, n) <= 300 Wodel * Optimization Information

Algorithm name mbcOSfmincon

Algorithm description [Single objective optimizati
Free variables d

Operating point vari... |None

ltem =caling off
£ >
Optimization Point Set
Mumber of operating points: 214@ Select Scalar Variables. .
Free Variables Fixed Variables
“ariable: d “ariable: Trg n

1 -146.939 1 1 1720

2 -145.935 2 1 2020

3 -145.935 3 1 2320

6 In the Cage Browser, select Run.

The optimization results are similar to these.

5-27

5 Model Quickstart

Results Surface =3

Last change: Values
filled from optimization

Lookup Table: | ld_Table ~ || Edit Lookup Table

X-axis: |Trg b Y-axis. |n A Z-axis: |id A

=
Results Surface 8 h X
. - Last change: Values
Lookup Table: Table ~ || Edit Lookup Table
: = OOKUP 1D | fied from optimization
X-axiz: |Trg e Y-axis: n e Z-axiz: |lg o

5-28

Generate Current Controller Calibration Tables for Flux-Based Motor Controllers

Fill Lookup Tables

1

In the CAGE Browser, select Fill Lookup Tables.

Common Tasks

| Fill Lookup Tables..

[

X Create Sum Optimization

B2 Tradeoff

Use the Lookup Table Filling from Optimization Results Wizard to fill the Id Table and

Iq Table tables.

Lookup Table Selection

Available CAGE lookup tables:
Table i’

Cancel

Iy Lookup Table Filling from Optimization Results Wizard —

Select the CAGE lookup tables that vou wish te fill from the optimization results

CAGE lookup tables to be filled:

Tabile
L& ld_Table{Trg_norm,n_norm}
1:? lg_Table{Trg_norm,n_norm})

< Back Mext =

Finish

» For the Id Table, fill with Id.
* For the Iq Table, fill with Iq.

5-29

5 Model Quickstart

4 Lookup Table Filling from Optimization Results Wizard — O *

Optimal Result Selection
Choose the optimization results that vou want to fill each lookup table with.

Lookup tables values to be filled:
CAGE Lookup Table Fill with Tradeoff Optimization Results
lg_Table{Trg_norm,n_no...] EE lg_Tradeoff 1 X Trg
xn
G
'™
Mormalizer inputs: dhTea
MNormalizer Input

I/ n_norm XN m

| Cancel | | <Back | | Next> | Fish |

Click Next. For the Fill Method, select Clip Fill (column-based).

|4\ Lockup Table Filling from Optirnizatic

Fill Algorithm
Set up lookup table filling algorithm.

Fill Methed: | Clip Fill (column-based) w

E Use acce| Extrapolate Fill
[] Update tr Direct Fil

Filter miles fio Clip Fill {column-based)
Tahle Clip Fill {row-based)

1 14_Table | Custom]

Click Finish.

3 Review results for Iq_Table. The results are similar to these.

5-30

Generate Current Controller Calibration Tables for Flux-Based Motor Controllers

lg_Table

n 6000 Trg

4 Review results for Id Table. The results are similar to these.

ld_Table

n 6000 S

5 Select File > Save Project. Save gs_example. cag to work folder.

5-31

5 Model Quickstart

Export Results

1 Select File > Export > Calibration.

2 Use Export Calibration Data to select the items to export and format. For example, export the Id
and Iq tables and breakpoints to MATLAB file gs_example.m.

4. Export Calibration Data — x

Calibration tems in the CAGE project PMSMCalibration:

tem Type

d_Table 2D Iookup table
lo_Table 20 lookup table
Trg_norm Normalizer
1 n_norm Mormalizer

Select all by type:
20 lookup tables

Normalizers

Export to: Simple MATLAB file -

References

[1] Hu, Dakai, Yazan Alsmadi, and Longya Xu. “High fidelity nonlinear IPM modeling based on
measured stator winding flux linkage.” IEEE® Transactions on Industry Applications, Vol. 51,
No. 4, July/August 2015.

[2] Chen, Xiao, Jiabin Wang, Bhaskar Sen, Panagiotis Lasari, Tianfu Sun. “A High-Fidelity and
Computationally Efficient Model for Interior Permanent-Magnet Machines Considering the
Magnetic Saturation, Spatial Harmonics, and Iron Loss Effect.” IEEE Transactions on
Industrial Electronics, Vol. 62, No. 7, July 2015.

[3] Ottosson, J., M. Alakula. “A compact field weakening controller implementation.” International
Symposium on Power Electronics, Electrical Drives, Automation and Motion, July, 2006.

5-32

Mapped Engine Lookup Tables

Mapped Engine Lookup Tables

The Model-Based Calibration Toolbox includes projects and templates that you can use to calibrate
mapped engine lookup tables. Use the lookup tables in these Powertrain Blockset™ engine blocks:

* Mapped CI Engine — Implements a mapped compression-ignition (CI) engine model

* Mapped SI Engine — Implements a mapped spark-ignition (SI) engine model

To help you get started with the calibration, the CAGE browser and Model Explorer include these

templates and examples.

Engine Torque and
Speed” on page 5-43

Torque Input

“Mapped SI Lookup
Tables as Functions of
Engine Torque and
Speed” on page 5-53

SI Mapped Engine-
Torque Input

Example Template Lookup Tables
“Mapped CI Lookup CI Mapped Engine- * Power
Tables as Functions of |[Fuel Input ¢ Air

Fuel Mass and Engine . Fuel

Speed” on page 5-34 - .
“Mapped CI Lookup CI Mapped Engine- emPera ure
Tables as Functions of * Efficiency

Hydrocarbon (HC) emissions
Carbon monoxide (CO) emissions

Nitric oxide and nitrogen dioxide (NOx)
emissions

Carbon dioxide (CO2) emissions
Particulate matter (PM) emissions

See Also

Mapped CI Engine | Mapped SI Engine

5-33

5 Model Quickstart

Mapped CI Lookup Tables as Functions of Fuel Mass and Engine
Speed

The Model-Based Calibration Toolbox includes projects and templates that you can use to generate
calibrated compression-ignition (CI) lookup tables as a function of fuel mass and engine speed. Use
the tables in the Powertrain Blockset Mapped CI Engine block.

Use Test Plan Template to Fit Models

1 In the Model Browser, to open the data, select Import Data. Navigate to the spreadsheet that
contains the data.

For example, open matlab\toolbox\mbc\mbctraining\CiEngineData.x1lsx.

The spreadsheet contains firing and motor data collected at different engine torques and speeds.

Firing Data Description
FuelMassCmd Commanded fuel mass, in mg
Torque Engine torque, in Nm
EngSpd Engine speed, in rpm
AirMassFlwRate Air mass flow, in kg/s
BSFC Engine brake-specific fuel consumption (BSFC), in g/kWh
CO2MassFlwRate Carbon dioxide emission mass flow, in kg/s
COMassFlwRate Carbon monoxide emission mass flow, in kg/s
ExhTemp Exhaust temperature, in K
FuelMassFlwRate Fuel mass flow, in kg/s
HCMassFlwRate Hydrocarbon emission mass flow, in kg/s
NOxMassFIlwRate Nitric oxide and nitrogen dioxide emissions mass flow, in kg/s
PMMassFlwRate Particulate matter emission mass flow, in kg/s
Nonfiring motor data is collected at different engine speeds, without fuel consumption.
Nonfiring Data Description
Torque Engine torque command, in Nm
EngSpd Engine speed, in rpm
AirMassFlwRate Air mass flow, in kg/s

2 In the Select Sheet dialog box, select the data that you want to calibrate. For example, select
Firing Data.
3 Optionally, use the Data Editor filter the data. After you have filtered the data, close the Data
Editor.

4 In the Model Browser, select Fit Models. In the Fit Models dialog box, in the Template pane,
select the template.

For example, to fit the firing data in the spreadsheet, select MappedEngine-Fuel. Do not
change the default responses and inputs.

5-34

Mapped ClI Lookup Tables as Functions of Fuel Mass and Engine Speed

5

4 Fit Models

Data

Data get: |CiEngineData

Walidation data set: |<nnne>

Y| (] [
|

Percentage of data to use for validation:

Template

-

20

-

i

Two-5Stage

o

Inputs and Responses
Responses

AirMassFlwRate

MappedEngine-Fuel

=

MappedEngine-Monfiring MappedEngine-Torque

|:| Use default models for large data

Inputs

EngSpd
FuelMassCmd

2 Browse...

Template:
Example

Data channels

A
B
ud
W
D Open Data Editor on completion
[ok | cancel | e |

Review the model fits.

To review the response models, in the tree, select the top level.

File TestPlan View Window Help
@Bhad e axm|e oy |1 2 0 | B |)
All Models FiF Test Plan: MappedEngine-Fuel
@ Untitied Test Plan Response Models
B"ﬂ'
- fp AirMassFlwRate 01, | ———— -
- {4 BSFC 2 . .-
& .
- {@ CO2MassFlwRate o L.l
- {p COMassFlwRate = 008 . .t
wa L - -
/.'\ ExhTemp g - Y PR
/@ FuelMassFlwRate Al : NEl L ae
- {@ HCMassFlwRate ;! ! Leett
/4 NOxMassFlwRate Z 004 ' HE
- {@ PMMassFiwRate 4 .
f." Torgue = 002 - — ! —— —
{ .

5-35

5 Model Quickstart

To review the response surfaces, in the tree, select the response.

@B hodanxale |wédueERAREE

All Models /." Response Model: CO2MassFlwRate
Untitled g q
@ n) Model type: Gaussian Process Model (ARDSquaredExponential, Constant)
£ MappedEngine-Fuel
- fdp AirMassFlwRate =S
g BSFC Response Surface Bm X%
ﬁ CO2MassFiwRate Plot: Surface ~ COZMassF wRate
- fap COMassFlwRate X-axis: |EngSpd -
f.'\ ExhTemp)
/."‘ FuelMassFlwRate Y-axis: |FuelMassCmd -
o
? HCMassFlwRate Name Walue Tolerance g ooz
/! NOxMassFlwRate Eng... [1000:80:5 | Linked to X_.. §
@ PMliassFlwRate Fuel..|7.894738¢L)| Linked to v..| =
f.'\ Torque g 001
o
O q
60
0 2
FuelMassGmd 0 1000
SelectDataPoint.. | | ooeome Ml EngSpd [rpr]

Open CAGE Project

To open the project, in the CAGE Case Studies pane:

1 Select CI Mapped Engine - Fuel Input.
2 (Click Open Example.

The project includes these tables.

Name Description |Table

f air Air mass flow,
in kg/s

5-36

Mapped ClI Lookup Tables as Functions of Fuel Mass and Engine Speed

Name

Description

Table

f eff

Engine brake-
specific fuel
consumption
(BSFC), in
g/kWh

700 -

f co2

Carbon
dioxide
emission
mass flow, in
kg/s

5-37

5 Model Quickstart

Name Description |Table
f co Carbon
monoxide
emission
mass flow, in
kg/s
f_texh Exhaust
temperature, “*
in K AN
\t“:‘:”:‘:“‘t
LD :“““":"““‘
1000 o “‘\“-"3"‘.“&‘1"‘
= ‘ o
800 .|
600 .|
400 -
e X
40.

5-38

Mapped ClI Lookup Tables as Functions of Fuel Mass and Engine Speed

Name Description |Table
f fuel Fuel mass
flow, in kg/s
f hc Hydrocarbon
emission

mass flow, in
kg/s

5-39

5 Model Quickstart

EngSpd

EngSpd

E E
: i
= =
g 23 g
— 1 [

h o 7 T e o T T 7 A B | T &2 .

Ko} = o 2 .umm Dw T N o9 @ ow ow oo mmm

2 2 == 2 2 = 2

T *

c = = =]

oee o— o=

5|28 g% £ 3

- | © 5 o 9 =] S

- — =) [S =

0| Q=8 , = 42 A e

nEg XA aw = R)

O =SS E S s 8885

O|(Z c<T o 8 X A E o BN

X

HE =

[} | I

= [+ e

5-40

Mapped ClI Lookup Tables as Functions of Fuel Mass and Engine Speed

Name Description |Table

f brake Engine torque

command, in
Nm

Use CAGE to Import and Replace Models

Use the project to import and replace existing models with new models.

1

In CAGE, select File > Import > Model. If you do not have a model open, the model browser
opens. Select a model.

If your current project has two or more test plans, the Import Models dialog box prompts you to
merge compatible models. Select No.

The Import Models dialog box prompts you to Replace, Skip, or Create new models. Select
Replace.

4| Import Models —

Import from MBC Model Fitting

These modelz will be imported to CAGE when vou click QK.
If a model iz replaceable in CAGE vou can select Replace or Create new in the Acti
Double-click CAGE Model Name cells to edit names.

Original Mame Action CAGE Model Name
* AirMassFlwHate Reolace o IAirassFlwRate
-\ BSFC Reolace . |BSFC
4 COZMassFlwRate Reolace w |COZMassFlwRate

After you import and replace the existing models, the Import Models wizard opens the Update Tables
dialog box. You can use the Update Table dialog box to rerun optimizations and feature fills to update
the tables with the new models.

5-41

5 Model Quickstart

+ Update Tables

O

Rerun optimizations and feature fillz to update tables using new models.

ftem

13. f_air_Feature
13. f_co2_Feature
13. f_co_Feature
13. f_eff_Feature
13. f_fuel_Feature
13. f_hc_Feature
13. f_nox_Feature
13. f_pm_Feature
13. f_tbrake_Feature
13. f_texh_Feature

Complete.

Tables
f_air
f_co2
f_co
f_eff
f_fuel
f_hc
f_nox
f_pm
f_tbrake
f_texh

¥
o

,_..
c
@

et

Review and Export Lookup Tables

In CAGE, review the calibrated tables.

To export the tables, select File > Export > Calibration > All Items. Use the Export to
parameter to specify the format. To export so that you can use the data for the Powertrain
Blockset mapped engine blocks, select Simulink Model Workspace. The Model-Based
Calibration Toolbox saves the mapped engine table and breakpoint data to the model workspace.

See Also
Mapped CI Engine

More About

5-42

“Data Manipulation”
“Assess High-Level Model Trends”

“Assess One-Stage Models”

“Generate Mapped CI Engine from a Spreadsheet” (Powertrain Blockset)

Mapped ClI Lookup Tables as Functions of Engine Torque and Speed

Mapped Cl Lookup Tables as Functions of Engine Torque and
Speed

The Model-Based Calibration Toolbox includes projects and templates that you can use to generate
calibrated compression-ignition (CI) lookup tables as a function of engine torque and speed. Use the
tables in the Powertrain Blockset Mapped CI Engine block.

Use Test Plan Template to Fit Models

1 In the Model Browser, to open the data, select Import Data. Navigate to the spreadsheet that
contains the data.

For example, open matlab\toolbox\mbc\mbctraining\CiEngineData.x1lsx.

The spreadsheet contains firing and motor data collected at different engine torques and speeds.

Firing Data Description
FuelMassCmd Commanded fuel mass, in mg
Torque Engine torque, in Nm
EngSpd Engine speed, in rpm
AirMassFlwRate Air mass flow, in kg/s
BSFC Engine brake-specific fuel consumption (BSFC), in g/kWh
CO2MassFlwRate Carbon dioxide emission mass flow, in kg/s
COMassFlwRate Carbon monoxide emission mass flow, in kg/s
ExhTemp Exhaust temperature, in K
FuelMassFlwRate Fuel mass flow, in kg/s
HCMassFlwRate Hydrocarbon emission mass flow, in kg/s
NOxMassFIlwRate Nitric oxide and nitrogen dioxide emissions mass flow, in kg/s
PMMassFlwRate Particulate matter emission mass flow, in kg/s
Nonfiring motor data is collected at different engine speeds, without fuel consumption.
Nonfiring Data Description
Torque Engine torque command, in Nm
EngSpd Engine speed, in rpm
AirMassFlwRate Air mass flow, in kg/s

2 In the Select Sheet dialog box, select the data that you want to calibrate. For example, select
Firing Data.

3 Optionally, use the Data Editor filter the data. After you have filtered the data, close the Data
Editor.

4 In the Model Browser, select Fit Models. In the Fit Models dialog box, in the Template pane,
select the template.

For example, to fit the firing data in the spreadsheet, select MappedEngine-Torque. Do not
change the default responses and inputs.

5-43

5 Model Quickstart

5-44

5

~Data

|4 Fit Models

Data set:

|CEngineData ~ |
St
|

Walidation data set: |<nnne>

Percentage of data to use for validation: 202

-

~ Template

i

Two-5Stage

o

j:l’" " Browse...

MappedEngine-Fuel Template:
Example

Responses

o Hate

Em
ud

[Fit boundary model
[] Use default models for large data

Inputs
EngSpd A E
Torgue E
hd]
D Open Data Editor on completion
[ok | cancel | e |

Review the model fits.

To review the response models, in the tree, select the top level.

Mapped ClI Lookup Tables as Functions of Engine Torque and Speed

File TestPlan View Window Help

B L0 d A &= ? |kt ey @ g
All Models £ Test Plan: MappedEngine-Torque
@ Untitled Test Plan Response Models
=851l MappedEngine-Torque
- fdp AirMassFlwRate 012
~{@ BSFC R .
~{@ CO2MassFlwRate B 01 . f
- /b COMassFlwRate S oy ="
f\ - 0.08 . < 1
@ ExhTemp o : . LR
= M N
@ FuelMassFlwRate @ 0.06 {4 T R
-/ HCMassFiwRate ;i vl P
-/ NOxMassFlwRate 2 004 et AR IR
PMMassFlwRate N
e é 0.02 . i
-
ol | e — | 3 _ . _

To review the response surfaces, in the tree, select the response.

All Models /#® Response Model: BSFC
Untitled . .
@ nte) Model type: Gaussian Process Moedel (ARDSquaredExponential, Constant)
=4 MappedEngine-Torque
- /g AirllassFiwRate
Response Surface 8t X
/4T
-/ CO2MassFlwRate Plot: Surface i BSFC
- fap COMassFlwRate Yeaxis: |EngSpd =
f@ ExhTemp)
f@ FuelMassFlwRate] Torque >
;é HCMassFlwRate Name Value Tolerance
@ NOxMassFlwRate Eng... |1000:30:5 || Linked to X_..

-/ PUMassFiwRate

Torg...|19.47047:L_|Linked to ...

BSFC [g/(kWhj]

100

Torqus [N'm] 0 1000 ErgSpd frpm]

Select Data Point...

Open CAGE Project

To open the project, in the CAGE Case Studies pane:

1 Select CI Mapped Engine - Torque Input.
2 (Click Open Example.

The project includes these tables.

5-45

5 Model Quickstart

Name Description |Table

f air Air mass flow,
in kg/s

f eff Engine brake-
specific fuel
consumption
(BSFC), in 800~
g/kWh 550 J

5-46

Mapped ClI Lookup Tables as Functions of Engine Torque and Speed

Description

Table

f co2

Carbon
dioxide
emission
mass flow, in
kg/s

EngSpd

f co

Carbon
monoxide
emission
mass flow, in
kg/s

0 EngSpd

5-47

5 Model Quickstart

5-48

Name Description |Table
f_texh Exhaust
temperature,
in K
f fuel Fuel mass
flow, in kg/s

Mapped ClI Lookup Tables as Functions of Engine Torque and Speed

Name Description |Table
f hc Hydrocarbon
emission
mass flow, in
kg/s
f _nox Nitric oxide

and nitrogen
dioxide
emissions
mass flow, in
kg/s

EngSpd

5-49

5 Model Quickstart

Name Description |Table

f pm Particulate
matter
emission
mass flow, in
kg/s

f brake Engine torque
command, in
Nm

Use CAGE to Import and Replace Models

Use the project to import and replace existing models with new models.
1 In CAGE, select File > Import > Model. If you do not have a model open, the model browser
opens. Select a model.

2 Ifyour current project has two or more test plans, the Import Models dialog box prompts you to
merge compatible models. Select No.

3 The Import Models dialog box prompts you to Replace, Skip, or Create new models. Select
Replace.

5-50

Mapped ClI Lookup Tables as Functions of Engine Torque and Speed

—
Import from MBC Model Fitting

Theze models will be imported to CAGE when you click OK.
If a model iz replaceable in CAGE vou can select Replace or Create new in the Actii
Double-click CAGE Model Name cells to edit names.

Original Name Action CAGE Model Name
ﬂ AirllassFlwRate |F‘.et:-la|:e v IAirMassFleat&
-k BSFC Renlace . |BSFC

ﬂ CO2Mas=FlwRate Replace « |COZ2MassFlwRate

After you import and replace the existing models, the Import Models wizard opens the Update Tables
dialog box. You can use the Update Table dialog box to rerun optimizations and feature fills to update
the tables with the new models.

4. Update Tables — O >

Rerun optimizations and feature fillz to update tables using new models.

ftem Tables Status
13. f_air_Feature f_air a
13. f_coZ_Feature f_co2 a
13. f_co_Feature f_co a
¥4 f eff Feature f_eff (]
13. f_fuel_Feature f_fuel o
13. f_hc_Feature f_hc Q
13. f_nox_Feature f_nox Q
13. f_pm_Feature f_pm ﬂ
13. f_tbrake_Feature f_tbrake a
13. f_texh_Feature f_texh a
Complete.

Review and Export Lookup Tables

1 In CAGE, review the calibrated tables.

2 To export the tables, select File > Export > Calibration > All Items. Use the Export to
parameter to specify the format. To export so that you can use the data for the Powertrain
Blockset mapped engine blocks, select Simulink Model Workspace. The Model-Based
Calibration Toolbox saves the mapped engine table and breakpoint data to the model workspace.

See Also
Mapped CI Engine

5-51

5 Model Quickstart

5-52

More About

“Data Manipulation”

“Assess High-Level Model Trends”

“Assess One-Stage Models”

“Generate Mapped CI Engine from a Spreadsheet” (Powertrain Blockset)

Mapped S| Lookup Tables as Functions of Engine Torque and Speed

Mapped S| Lookup Tables as Functions of Engine Torque and
Speed
The Model-Based Calibration Toolbox includes a project and template that you can use to generate

calibrated spark-ignition (SI) lookup tables as a function of engine torque and speed. Use the tables
in the Powertrain Blockset Mapped SI Engine block.

Use Test Plan Template to Fit Models

1 In the Model Browser, to open the data, select Import Data. Navigate to the spreadsheet that
contains the data.

For example, open matlab\toolbox\mbc\mbctraining\SiEngineData.x1lsx.

The spreadsheet contains firing and motor data collected at different engine torques and speeds.

Firing Data Description

Torque Engine torque, in Nm

EngSpd Engine speed, in rpm

AirMassFlwRate Air mass flow, in kg/s.

BSFC Engine brake-specific fuel consumption (BSFC), in g/kWh
CO2MassFlwRate Carbon dioxide emission mass flow, in kg/s
COMassFlwRate Carbon monoxide emission mass flow, in kg/s

ExhTemp Exhaust temperature, in K

FuelMassFlwRate Fuel mass flow, in kg/s

HCMassFIlwRate Hydrocarbon emission mass flow, in kg/s
NOxMassFIlwRate Nitric oxide and nitrogen dioxide emissions mass flow, in kg/s
PMMassFlwRate Particulate matter emission mass flow, in kg/s

Nonfiring motor data is collected at different engine speeds, without fuel consumption.

Nonfiring Data Description

Torque Engine torque command, in Nm
EngSpd Engine speed, in rpm
AirMassFlwRate Air mass flow, in kg/s

2 In the Select Sheet dialog box, select the data that you want to calibrate. For example, select
Firing Data.

3 Optionally, use the Data Editor filter the data. After you have filtered the data, close the Data
Editor.

4 In the Model Browser, select Fit Models. In the Fit Models dialog box, in the Template pane,
select the template.

For example, to fit the firing data in the spreadsheet, select MappedEngine-Torque. Do not
change the default responses and inputs.

5-53

5 Model Quickstart

[#] Fit Models - O X

~Data

Data s&t: |SEngineData v|
St
|

Walidation data set: |<nnne>

-

Percentage of data to use for validation: 20

-

~ Template

j;" j:l’" " Browse...

Two-Stage MappedEngine-Menfiring Template:
Ei Example
]
~Inputs and Responses
Responses Data channels

AirMassFlwRate E A
&

OlassFlwRate
[Fit boundary model
[] Use default models for large data

Inputs

EngSpd A
Torgue

il

D Open Data Editor on completion

[ok | cancel | e |

5 Review the model fits.

To review the response models, in the tree, select the top level.

All Models | Bt Test Plan: MappedEngine-Torque
? Untitled Test Plan Response Models
=-fF l.1appedEngine—T|}rque
- fdp AirMassFlwRate 02
-/ BEFC = | \L___2___ & M____4____
~{@ CO2MassFlwRate & 015
- /4 COMassFlwRate g o
,/.'\ ExhTemp .
-/ FueldassFiwRate > 005 o TS
- @ HCMassFlwRate o] R T AN
- {@ NOxMassFlwRate 2 o
/® PMlassFiwRate E oos
S O N N R R T B
0.1

To review the response surfaces, in the tree, select the response.

5-54

Mapped S| Lookup Tables as Functions of Engine Torque and Speed

All Models

f@m untitied

= MappedEngine-Torgue
)
- fap BSFC

- fdp CO2MassFlwRate
- fab COMassFlwRate
fr.'\ ExhTemp

- fap FuelMassFlwRats
-/ HCMassFiwRate
-/ NOxMassFlwRate
-/ PUMassFiwRate

Open CAGE Project

/@ Response Model: AirfMassFlwRate

Model type: Gaussian Process Moedel (ARDSquaredExponential, Constant)

R
Response Surface 8t X
Plot: Surface w AirMassFhwRata
X-axis: |EngSpd ~
Y-axis: | Torgue ~ 015
)
Name Walue Tolerance g
Eng... [750:85:50)| Linkedto X..| = O
Torg...|16.188104L_| Linked to ... %
";';g 005
=
=
Ju]
200
6000
Select Data Point... Uil ¢ EngSpd [ram]

To open the project, in the CAGE Case Studies pane:

1 Select SI Mapped Engine - Torque Input.

2 (Click Open Example.

The project includes these tables.

Name Description |Table
f air Air mass flow,
in kg/s

5-55

5 Model Quickstart

Name Description |Table

f eff Engine brake-
specific fuel
consumption
(BSFC), in
g/kWh

f co2 Carbon
dioxide
emission
mass flow, in
kg/s

5-56

Mapped S| Lookup Tables as Functions of Engine Torque and Speed

Name Description |Table

f co Carbon
monoxide
emission
mass flow, in
kg/s

f_texh Exhaust
temperature,
in K

53..2

%% 0% 0% :‘-’:‘*
S
NS oessosesInsSs:

RN
\s‘\\‘;\‘!%. SRS

5-57

5 Model Quickstart

Name Description |Table

f fuel Fuel mass
flow, in kg/s

f _hc Hydrocarbon

emission
mass flow, in
kg/s

5-58

Mapped S| Lookup Tables as Functions of Engine Torque and Speed

Description

Table

f nox

Nitric oxide
and nitrogen
dioxide
emissions
mass flow, in
kg/s

f pm

Particulate
matter
emission
mass flow, in
kg/s

5-59

5 Model Quickstart

5-60

Name Description |Table

f brake Engine torque

command, in
Nm

Use CAGE to Import and Replace Models

Use the project to import and replace existing models with new models.

1

In CAGE, select File > Import > Model. If you do not have a model open, the model browser
opens. Select a model.

If your current project has two or more test plans, the Import Models dialog box prompts you to
merge compatible models. Select No.

The Import Models dialog box prompts you to Replace, Skip, or Create new models. Select
Replace.

D M I L e

m
I

Import from MBC Model Fitting

These models will be imported to CAGE when vou click QK.
If a model is replaceable in CAGE vou can select Replace or Create new in the Acti
Double-click CAGE Model Name cells to edit names.

Original Name Action CAGE Model Name
* AirMassFlwHate Reolace - AirlassFlwRate
-\ BSFC Reolace . |BSFC
* COZMassFlwRate Reolace w |COZMassFlwRate

After you import and replace the existing models, the Import Models wizard opens the Update Tables
dialog box. You can use the Update Table dialog box to rerun optimizations and feature fills to update
the tables with the new models.

Mapped S| Lookup Tables as Functions of Engine Torque and Speed

+ Update Tables

ftem

13. f_air_Feature
13. f_co2_Feature
13. f_co_Feature
13. f_eff_Feature
13. f_fuel_Feature
13. f_hc_Feature
13. f_nox_Feature
13. f_pm_Feature
13. f_tbrake_Feature
13. f_texh_Feature

Complete.

Tables
f_air
f_co2
f_co
f_eff
f_fuel
f_hc
f_nox
f_pm
f_tbrake
f_texh

¥
o

,_..
c
@

O

Rerun optimizations and feature fillz to update tables using new models.

et

Review and Export Lookup Tables

In CAGE, review the calibrated tables.

2 To export the tables, select File > Export > Calibration > All Items. Use the Export to
parameter to specify the format. To export so that you can use the data for the Powertrain
Blockset mapped engine blocks, select Simulink Model Workspace. The Model-Based

Calibration Toolbox saves the mapped engine table and breakpoint data to the model workspace.

See Also
Mapped SI Engine

More About

. “Data Manipulation”
. “Assess High-Level Model Trends”

. “Assess One-Stage Models”

. “Generate Mapped CI Engine from a Spreadsheet” (Powertrain Blockset)

5-61

Design of Experiment

6 Design of Experiment

Design of Experiments

6-2

Why Use Design of Experiment?

With today's ever-increasing complexity of models, design of experiment has become an essential part
of the modeling process. The Design Editor within the Model-Based Calibration Toolbox product is
crucial for the efficient collection of engine data. Dyno-cell time is expensive, and the savings in time
and money can be considerable when a careful experimental design takes only the most useful data.
Dramatically reducing test time is growing more and more important as the number of controllable
variables in more complex engines is growing. With increasing engine complexity, the test time
increases exponentially.

The traditional method of collecting large quantities of data by holding each factor constant in turn
until all possibilities have been tested is an approach that quickly becomes impossible as the number
of factors increases. A full factorial design (that is, testing for torque at every combination of speed,
load, air/fuel ratio, and exhaust gas recirculation on a direct injection gasoline engine with stratified
combustion capability) is not feasible for newer engines. Simple calculation estimates that, for
recently developed engines, to calibrate in the traditional way would take 99 years!

With a five-factor experiment including a multiknot spline dimension and 20 levels in each factor, the
number of points in a full factorial design quickly becomes thousands, making the experiment
prohibitively expensive to run. The Design Editor solves this problem by choosing a set of
experimental points that allow estimation of the model with the maximum confidence using just a
fraction of the number of experimental runs; for the preceding example just 100 optimally chosen
runs is more than enough to fit the model. Obviously, this approach can be advantageous for any
complex experimental design, not just engine research.

The Design Editor offers a systematic, rigorous approach to the data collection stage. When you plan
a sequence of tests to be run on an example engine, you can base your design on engineering
expertise and existing physical and analytical models. During testing, you can compare your design
with the latest data and optimize the remaining tests to get maximum benefit.

The Design Editor provides prebuilt standard designs to allow a user with a minimal knowledge of the
subject to quickly create experiments. You can apply engineering knowledge to define variable ranges
and apply constraints to exclude impractical points. You can increase modeling sophistication by
altering optimality criteria, forcing or removing specific design points, and optimally augmenting
existing designs with additional points.

Design Styles

The Design Editor provides the interface for building experimental designs. You can make three
different styles of design: classical, space-filling, and optimal.

Space-filling designs are better when there is low system knowledge. In cases where you are not sure
what type of model is appropriate, and the constraints are uncertain, space-filling designs collect data
in such as a way as to maximize coverage of the factors' ranges as quickly as possible.

Optimal designs are best for cases with high system knowledge, where previous studies have given
confidence on the best type of model to be fitted, and the constraints of the system are well
understood.

Design of Experiments

Classical designs (including full factorial) are very well researched and are suitable for simple regions
(hypercube or sphere). Engines have complex constraints and models (high-order polynomials and
splines).

You can augment any design by adding points. Working in this way allows new experiments to
enhance the original, rather than simply being a second attempt to gain the necessary knowledge.

Create Examples Using the Design Editor

Follow these steps to construct space-filling, optimal, and classical designs.

1 Choose a model to design an experiment for, enter the Design Editor, and construct an space-
filling design. Then construct and apply two different constraints to this design and view the
results. Often you would design constraints before constructing a design, but for the purposes of
this tutorial you make constraints last so you can view the effects on your design.

Create an optimal design.

After you create designs, use the displays and tools to examine the properties of the design, save
the design, and make changes.

4 Create a classical design, and use the Prediction Error Variance Viewer to compare it with the
optimal design. You can also use the Design Evaluation tool to view all details of any design.

See Also

Related Examples

. “Set Up a Model and Create a Design” on page 6-4

. “Create a Constrained Space-Filling Design” on page 6-5
. “View Design Displays” on page 6-8

. “Apply Constraints” on page 6-5

. “Use the Prediction Error Variance Viewer” on page 6-9
More About
. “Design of Experiments”

6-3

6 Design of Experiment

Set Up a Model and Create a Design

6-4

Set Up Model Inputs

You must first specify model inputs for which to design an experiment.

1 Start the Model Browser part of the toolbox by typing mbcmodel at the MATLAB command line.
2 From the startup project node view, in the Common Tasks pane, click Design experiment.

The New Test Plan dialog box appears.

Click the Two-Stage test plan icon mssw= in the Template pane. A two-stage model fits a model
to data with a hierarchical structure.

4 There is only one input to the global model by default. Click the up arrow button to increase the
Number of factors setting to 3.

Change the symbols of the three input factors to N, L, and A.
6 Click OK to dismiss the dialog box.

The Model Browser displays the test plan diagram with your specified model inputs.

Open the Design Editor
In the test plan view, in the Common Tasks pane, click Design experiment.
The Design Editor window appears.

Alternatively, to open the Design Editor, you can also use either of the following methods:

* Right-click the global model in the diagram and choose Design Experiment, as shown.

* You can also access the Design Editor by selecting the menu item TestPlan > Design
Experiment.

Create a New Design

1
Click the E button in the toolbar or select File > New. A new node called appears.

2 The new node is automatically selected. An empty Design Table appears (or any view you last
used in the Design Editor) because you have not yet chosen a design. For this example you create
an optimal design for the default global model.

You can change the model for which you are designing an experiment from within the Design
Editor window by selecting Edit > Model.

3 Rename the new node Space Fill (you can edit the names by clicking again on a node when it
is already selected, or by pressing F2, as when selecting to rename in Windows Explorer).

Create a Constrained Space-Filling Design

Create a Constrained Space-Filling Design

Space-filling designs should be used when there is little or no information about the underlying
effects of factors on responses. For example, they are most useful when you are faced with a new type
of engine, with little knowledge of the operating envelope. These designs do not assume a particular
model form. The aim is to spread the points as evenly as possible around the operating space. These
designs literally fill out the n-dimensional space with points that are in some way regularly spaced.
These designs can be especially useful with nonparametric models such as radial basis functions (a
type of neural network).

1 In the Design Editor, with the new design selected, select Design > Space Filling > Design
Browser, or click the Space Filling Design button on the toolbar.
Leave the default Sobol Sequence in the Design type list, and the default Number of points.
Use the Preview tabs to view 2-D and 3-D previews.
Click OK to calculate the space-filling design and return to the main Design Editor.

Apply Constraints

In many cases, designs might not coincide with the operating region of the system to be tested. For
example, a conventional stoichiometric AFR automobile engine normally does not operate with high
exhaust gas recirculation (EGR) in a region of low speed (n) and low load (). You cannot run 15%
EGR at 800 RPM idle with a homogeneous combustion process. There is no point selecting design
points in impractical regions, so you can constrain the candidate set for test point generation. Only
optimal designs have candidate sets of points; classical designs have set points, and space-filling
designs distribute points between the coded values of (1, -1).

You would usually set up constraints before making designs. Applying constraints to classical and
space-filling designs simply removes points outside the constraint. Constraining the candidate set for
optimal designs ensures that design points are optimally chosen within the area of interest only.

Designs can have any number of geometric constraints placed upon them. Each constraint can be one
of four types: an ellipsoid, a hyperplane, a 1-D lookup table, or a 2-D lookup table.

To add a constraint to your currently selected design:

Select Edit > Constraints from the Design Editor menus.
The Constraints Manager dialog appears. Click Add.

The Constraint Editor dialog with available constraints appears. Leave the default 1D Table in
the Constraint type list.

3 You can select the appropriate factors to use. For this example, choose speed (N) and air/fuel
ratio (A) for the X and Y factors.

4 Move the large dots (click and drag them) to define a boundary. The Constraint Editor should
look something like the following.

6 Design of Experiment

6-6

I ~
4 Edit Constraint =Nl X
1D Table constraints are used for constraining the 54
Constraint type: |1D Table i value of the Y-factor at specific values of the X-factor. mﬂ
¥ factorr |TQ ~ | Mumber of breakpoints: 5 : Span Factor Range mport Table
% factor: | Speed | Constraint inequality: <= -
TQ Speed 5000 L s
21.852 3564.5]
61.25 5000 4000 r *
112.5 5000 © b
157664 43475 g 3000 N CE
181.367 2288.5 5] —
2000 r @l
1000 I —
50 100 150 200 EB'
TQ
| 0K | | Cancel | | Help |
J
Click OK.

Your new constraint appears in the Constraint Manager list box. Click OK to return to the Design
Editor. A dialog appears because there are points in the design that fall outside your newly
constrained candidate set.

Click Continue to remove the points outside the constraint. Note that fixed points are not
deleted by this process.

2D Design Projection

100

¥-axiz factor IN vl ¥-axiz factor ||_ vl

Plot the 2-D projection of the hypercube, and observe the effects of the new constraint on the
shape of the design, as shown in the preceding example.

Right-click the display pane to reach the context menu, and select Current View > 3D
Constraints.These views are intended to give some idea of the region of space that is currently
available within the constraint boundaries.

Return to the Constraint Editor, choose Edit > Constraint, and click Add in the Constraint
Manager.

Add an ellipsoid constraint. Choose E11lipsoid from the drop-down menu of constraint types.

Create a Constrained Space-Filling Design

2 Edit Constraint 101 =l
. — An ellipzoid constraint keeps only the pou'rts sithin . :
Caonstraint type: IElllps-:ud - I the ellipzoid defined by (X-X WIX-X) £1. L .
Certet poirt: Elliprzoid form rostrix:
Factar Yalue M L A
S0 il de-4
L 501 L 0l 1]
A 50+ 2, 0 0 de-d

QK I Cancel Help

Enter 0 as the value for the L diagonal in the table, as shown. This will leave L unconstrained (a
cylinder). The default ellipsoid constraint is a sphere. To constrain a factor, if you want a radius
of rin a factor, enter 1/(r~2). For this example, leave the other values at the defaults. Click OK to
apply the constraint.

10 Click OK, click OK again in the Constraint Manager, and click Continue to remove design points
outside the new candidate set (or Replace if you are constraining an optimal design). Examine
the new constraint 3-D constraints plot.

Both constraints are applied to this design.
See Also

Related Examples
. “Design of Experiments” on page 6-2
. “View Design Displays” on page 6-8

More About

. “Design of Experiments”

6 Design of Experiment

View Design Displays

6-8

In the Design Editor, after you create a design, it shows the Design Table view of the design or other
views if you previously viewed designs. In the context menu, available by right-clicking on the title
bar, you can change the view of the design to 1-D, 2-D, 3-D, 4-D, and pairwise design projections, 2-D
and 3-D constraint views, and the table view (also under the View menu). This menu also allows you
to split the display either horizontally or vertically so that you simultaneously have two different
views on the current design. You can also use the toolbar buttons to do this. The split can be merged
again. After splitting, each view has the same functionality; that is, you can continue to split views
until you have as many as you want. When you click a view, its title bar becomes blue to show it is the
active view.

The currently available designs are displayed on the left in a tree structure.
Display Options

The Design Editor can display multiple design views at once, so while working on a design you can
keep a table of design points open in one corner of the window, a 3-D projection of the constraints
below it and a 2-D or 3-D plot of the current design points as the main plot.

The current view and options for the current view are available either through the context menu or
the View menu on the Design Editor window.

1 Change the main display to 3-D Projection view.

2 You can rotate the projection with click-drag mouse movement. View your design in several
projections (singly, or simultaneously by dividing the pane) by using the right-click context menu
in the display pane.

See Also

Related Examples

. “Design of Experiments” on page 6-2

. “Create a Constrained Space-Filling Design” on page 6-5
. “Use the Prediction Error Variance Viewer” on page 6-9
More About

. “Design of Experiments”

Use the Prediction Error Variance Viewer

Use the Prediction Error Variance Viewer

Introducing the Prediction Error Variance Viewer

A useful measure of the quality of a design is its prediction error variance (PEV). The PEV
hypersurface is an indicator of how capable the design is in estimating the response in the underlying
model. A bad design is either not able to fit the chosen model or is very poor at predicting the
response. The Prediction Error Variance Viewer is only available for linear models. The Prediction
Error Variance Viewer is not available when designs are rank deficient; that is, they do not contain
enough points to fit the model. Optimal designs attempt to minimize the average PEV over the design
region.

With an optimal design selected, select Tools > Prediction Error Variance Viewer.

=} Prediction Error Yariance Yiewer -10] x|
File wiew Window Help L
Input factors:
I Min:lu Maxh oo HSZ|21 j
L Min:lu Maxh oo HSZ|21
A | 50 b
045
0.4
035
— [t
[~ Clip plot Clipping envelope = |1 o
B
[T Lpply constraints £ 03
[~ Apply boundary: model 2
w
T 025
— Dizplay type 5
g
2-Dr plot - 2 2
Surface _I &
Cortour plot L
hovie 045 | .-
[01
100

100

— Cptimality criteria

FactorsGmax =
i) 1%
L
<}
L
X-axis factor: Y-axis factor:
= Calculate. ..

I = v]

The default view is a 3-D plot of the PEV surface.

6-9

6 Design of Experiment

This shows where the response predictions are best. This example optimal design predicts well in the
center and the middle of the faces (one factor high and the other midrange), but in the corners the
design has the highest error. Look at the scale to see how much difference there is between the areas
of higher and lower error. For the best predictive power, you want low PEV (close to zero).

You can examine PEV for designs and models. The two are related in this way:

Accuracy of model predictions (model PEV)=Design PEV * MSE (Mean Square Error in
measurements).

You can think of the design PEV as multiplying the errors in the data. The smaller the PEV, the
greater the accuracy of your final model.

Try the other display options.

* The View menu has many options to change the look of the plots.

* You can change the factors displayed in the 2-D and 3-D plots. The pop-up menus below the plot
select the factors, while the unselected factors are held constant. You can change the values of the
unselected factors using the buttons and edit boxes in the Input factors list, top left.

* The Movie option shows a sequence of surface plots as a third input factor's value is changed. You
can change the factors, replay, and change the frame rate.

* You can change the number, position, and color of the contours on the contour plot with the
Contours button, as shown.

Predicted Errar Yariance

Add Points Optimally

You can further optimize the optimal design by returning to the Optimal Design dialog, where you can
delete or add points optimally or at random. The most efficient way is to delete points optimally and

6-10

Use the Prediction Error Variance Viewer

add new points randomly — these are the default algorithm settings. Only the existing points need to
be searched for the most optimal ones to delete (the least useful), but the entire candidate set has to
be searched for points to add optimally.

To strengthen the current optimal design:

Return to the Design Editor window.

Click the Optimal Design button in the toolbar again to reenter the dialog, and add 60 more
points. Keep the existing points (which is the default).

3 Click OK and watch the optimization progress, then click Accept when the number of iterations
without improvement starts increasing.

View the improvements to the design in the main displays.

5 Once again select Tools > Prediction Error Variance Viewer and review the plots of prediction
error variance and the new values of optimality criteria in the optimality frame (bottom left). The
shape of the PEV projection might not change dramatically, but note the changes in the scales as
the design improves. The values of D, V, and G optimality criteria will also change (you have to
click Calculate to see the values).

To see more dramatic changes to the design, return to the Design Editor window (no need to close
the Prediction Error Variance Viewer).
Split the display so you can see a 3-D projection at the same time as a Table view.
2 You can sort the points to make it easier to select points in one corner. For example, to pick
points where N is 100 and L is O,
a Select Edit > Sort Points.
b Choose to sort by N only (reduce the number of sort variables to one) and click OK.
3 Choose Edit > Delete Point.

Using the Table and 3-D views as a guide, in the Delete Points dialog, pick six points to remove
along one corner. Add the relevant point numbers to the delete list by clicking the add (>) button.

5 Click OK to remove the points. See the changes in the main design displays and look at the new
Surface plot in the Prediction Error Variance Viewer (see the example following).

6-11

6 Design of Experiment

na- -

015

=
!

Predicted Error Variance

pos-| "

See Also

Related Examples
. “Design of Experiments” on page 6-2
. “Create a Constrained Space-Filling Design” on page 6-5

More About

. “Design of Experiments”

6-12

Data Editor for Modeling

7 Data Editor for Modeling

Manipulate Data for Modeling

7-2

For empirical engine modeling in the Model Browser, first load, process, and select data for modeling.
This tutorial shows you how to use the Data Editor for loading data, creating variables, and creating
constraints for that data.

You can load data from files (Microsoft® Excel® files, MATLAB files, text files) and from the MATLAB
workspace. You can merge data in any of these forms with previously loaded data sets to produce a
new data set. Test plans can use only one data set, so the merging function allows you to combine
records and variables from different files in one model.

You can define new variables, apply filters to remove unwanted data, and apply test notes to filtered
tests. You can store and retrieve these user-defined variables and filters for any data set, and you can
store plot settings. You can change and add records and apply test groupings, and you can match
data to designs. You can also write your own data loading functions.

To get started, follow these workflow steps.

Workflow Steps Description
“View and Edit the Data” on page 7-2 Use the Data Editor displays to investigate your
data.

“Create New Variables and Filters” on page 7-5 |Define your own new variables and filters to
remove unwanted data.

“Store and Import Variables, Filters, and Plot Store plot preferences, user-defined variables,
Preferences” on page 7-6 filters, and test notes.
“Define Test Groupings” on page 7-6 Use the Define Test Groupings dialog box to

group your data.

“Match Data to Experimental Designs” on page 7- |Use an example project to match experimental

8 data to designs.

View and Edit the Data
Viewing Data

You can split the views to display several plots at once. Use the right-click context menus, the toolbar
buttons, or the View menu to split views. You can choose 2-D plots, 3-D plots, multiple data plots,
data tables, and tabs showing summary, statistics, variables, filters, test filters, and test notes. You
can use test notes to investigate problem data and decide whether to remove some points before
modeling.

Using Notes to Sort Data for Plotting

Right-click a view and select Current View > Multiple Data Plot.
Right-click the new view and select Add Plet.

The Plot Variables Setup dialog box appears.

3 Select spark and click to add to the X Variable box, then select tq and click to add to the Y
Variable box. Click OK to create the plot.

4 Click in the Tests list to select a test to plot (or Shift-click, Ctrl-click, or click and drag to select
multiple tests).

Manipulate Data for Modeling

10

Select Tools > Test Notes.

In The Test Note Editor, enter mean (tq) <10 in the top edit box to define the tests to be noted,
and enter Low torque in the Test Note edit box. Leave the note color at the default and click
OK.

Click the Test Notes tab to view your note definition.

In the Test Selector pane on the left, observe that all the tests that satisfy the condition
mean(tq)<10 show Low torque next to them. Click the column header to sort the tests that
meet the note condition to the top or bottom of the list.

Now create more views.

* Right-click a view and select Split View > Data Table.

* Right-click a view and select Split View > 3D Plot.

In the Test Selector pane, click particular tests with the Low torque note.

Notice that when you select a test here, the same test is plotted in the multiple data plots, the 3D

data plot, and highlighted in the data table. You can use the notes in this way to easily identify
problem tests and decide whether to remove them.

Removing Outliers and Problem Tests

1

Click a point on the Multiple Data Plots view.

The point is outlined in red on the plot, and highlighted in the data table. You can remove points
you have selected as outliers by selecting Tools > Remove Data (or use the keyboard shortcut
Ctrl+A). Select Tools > Restore Data (or use the keyboard shortcut Ctrl+Z) to open a dialog
box where you can choose to restore any or all removed points.

You can remove individual points as outliers, or you can remove records or entire tests with
filters.

For example, after examining all the Low torque noted tests, you could decide to filter them
out.

a Select Tools > Test Filters.

In the Test Filter Editor, enter mean(tq)>10 to keep all tests where the mean torque is
greater than 10, and click OK.

¢ Click the Test Filters tab and observe the new test filter results show it is successfully
applied and the number of records removed.

To view removed data in the table view, right-click and select Allow Editing. Removed records
are red. To view removed data in the 2-D and Multiple Data Plots, select Properties and select
the box Show removed data.

Reordering and Editing Data

To change the display, right-click a 2-D plot and select Properties. You can alter grid and plot
settings including lines to join the data points.

Reorder X Data in the Plot Properties dialog box can be useful when record order does not produce
a sensible line joining the data points. For an illustration of this:

1

Ensure that you are displaying a 2-D plot. You can right-click any plot and select Current Plot >
2-D Plet, or use the context menu split commands to add new views.

7 Data Editor for Modeling

2 Right-click a 2-D plot and select Properties and choose solid from the Data Linestyle drop-
down menu. Click OK.

S
Data linestyle; ISDIid ()]
Data marker: IDD‘t j
[~ Reorder X data [~ Shovw grid
[~ Show legend [~ Showe bad data
Ok, I Cancel

3 Choose afr for the y-axis.
Choose Load for the x-axis.

5 Select test 590. Use the test controls contained within the 2-D plot. The Tests pane on the left
applies to other views: tables and 3-D and multiple data plots.

537 ~|| 1458

588 x| 1455

‘r-axis selection

_g 14.54
eqr

load
i
;iegno | 14s3

| ¥-axis selection

| <none: -
| alr

ot ' losd [rati)
I —

6 Right-click and select Properties and choose Reorder X Data. Click OK.

1452

This command replots the line from left to right instead of in the order of the records, as shown.

20 Data Plat

| Tests aft (%]
T

RaT - TBER [oeve s e

586 ; : & s |

5a7 : : :

Eﬁﬁ j L =3 T - PP

‘r-axis selection : : .
_g 14.54

eqr

load

lagno =l 1ass

¥-awiz zelection

<hiones - 1452

afr . 0605 01
I — o [t

: Ad

Manipulate Data for Modeling

7 Right-click and select Split Plot > Data Table to split the currently selected view and add a
table view. You can select particular test numbers in the Tests pane on the left of the Data Editor.
You can right-click to select Allow Editing, and then you can double-click cells to edit them.

Create New Variables and Filters

Adding New Variables

You can add new variables to the data set.

1 Select Tools > Variables, or click the toolbar button.

In the Variable Editor, you can define new variables in terms of existing variables. Define the new
variable by writing an equation in the edit box at the top.

2 Define a new variable called POWER that is defined as the product of two existing variables, tq
and n, by entering POWER=tqg*n, as seen in the example following. You can also double-click
variable names and operators to add them, which can be useful to avoid typing mistakes in
variable names, which must be exact including case.

3 Click OK to add this variable to the current data set.
View the new variable in the Data Editor in the Variables tab at the top. You can also now see 7 +
1 variables in the summary tab.

Applying a Filter

A filter is a constraint on the data set you can use to exclude some records. You use the Filter Editor
to create filters.

1 Choose Tools > Filters, or click the toolbar button.

In the Filter Editor, define the filter using logical operators on the existing variables.

2 Keep all records with speed (n) greater than 1000. Type n (or double-click the variable n), then
type >1000.

3 Click OK to impose this filter on the current data set.

View the new filter in the Data Editor in the Filters tab at the top. Here you can see a list of your
user-defined filters and how many records the new filter removes. You can also now see 141/270
records in the summary tab and a red section in the bar illustrating the records removed by the
filter.

Sequence of Variables

You can change the order of user-defined variables in the Variable Editor list using the up and down
arrow buttons.

Select Tools > Variables.

Example:

1 Define two new variables, Newl and New2. You can use the buttons to add or remove a list item to
create or delete variables in this view. Click the button to 'Add item' to add a variable, and enter
the definitions shown.

Notice that New? is defined in terms of Newl. New variables are added to the data in turn and
hence Newl must appear in the list before New2, otherwise New?2 is not well-defined.

7-3

7 Data Editor for Modeling

2 Change the order by clicking the down arrow in the Variable Editor to produce this erroneous
situation. Click OK to return to the Data Editor and in the Variables tab you can see the error
message that there is a problem with the variable.

3 Use the arrows to order user-defined variables in legitimate sequence.
Deleting and Editing Variables and Filters
You can delete user-defined variables and filters.

Example:

1 To delete the added variable Newl, select it in the Variables tab and press the Delete key.
2 You can also delete variables in the Variable Editor by clicking the Remove Item button.

Similarly, you can delete filters by selecting the unwanted filter in the Filters tab and using the

Delete key.

Store and Import Variables, Filters, and Plot Preferences

You can store and import plot preferences, user-defined variables, filters, and test notes so they can
be applied to other data sets loaded later in the session, and to other sessions.

» Select Tools > Import Expressions

Click the toolbar button &

The Data Editor remembers your plot type settings and when reopened displays the same types of
views. You can also store your plot layouts to save the details of your Multiple Data Plots.

In the Import Variables, Filters, and Editor Layout dialog box, use the toolbar buttons to import
variables, filters, and plot layouts. Import from other data sets in the current project, or from MBC
project files, or from files exported from the Data Editor.

To use imported expressions in your current project, select items in the lists and click the toolbar
button to apply in the data editor.

To store expressions in a file, in the Data Editor, select Tools > Export Expressions and select a file
name.

Define Test Groupings

The Define Test Groupings dialog box collects records of the current data object into groups. These
groups are referred to as tests.

The dialog box is accessed from the Data Editor in either of these ways:

* Using the menu Tools > Test Groups

]
Lliu.l
it

Using the toolbar button

When you enter the dialog box using the holliday data, a plot is displayed as the variable Logno is
automatically selected for grouping tests.

Manipulate Data for Modeling

Select another variable to use in defining groups within the data.

Select n in the Variables list.
Click the @ button to add the variable (or double-click n).

The variable n appears in the list view on the left. You can now use this variable to define groups
in the data. The maximum and minimum values of n are displayed. The Tolerance is used to
define groups: on reading through the data, when the value of n changes by more than the
tolerance, a new group is defined. You change the Tolerance by typing directly in the edit box.

You can define additional groups by selecting another variable and choosing a tolerance. Data
records are grouped by n or by this additional variable changing outside their tolerances.

3 Clear the box Group by for Logno. Notice that variables can be plotted without being used to
define groups.

Add load to the list by selecting it on the right and clicking @.
Change the load tolerance to 0.01 and watch the test grouping change in the plot.

Clear the Group By check box for Lload. Now this variable is plotted without being used to
define groups.

The plot shows the scaled values of all variables in the list view (the color of the tolerance text
corresponds to the color of data points in the plot). Vertical pink bars show the tests (groups).
You can zoom the plot by Shift-click-dragging or middle-click-dragging the mouse; zoom out
again by double-clicking.

7 Select load in the list view (it becomes highlighted in blue) and remove it from the list by
clicking the | button.

8 Double-click to add spark to the list, and clear the Group By check box. Select Logno as the
only grouping variable.

It can be helpful to plot the local model variable (in this case spark) to check that you have the
correct test groupings. The plot shows the sweeps of spark values in each test while speed (n) is
kept constant. Speed is only changed between tests, so it is a global variable. Try zooming in on
the plot to inspect the test groups; double-click to reset.

One-stage data defines one test per record, regardless of any other grouping. This is required if
the data is to be used in creating one-stage models.

Sort records before grouping allows you to reorder records in the data set. Otherwise, the
groups are defined using the order of records in the original data object.

Show original test groups displays the original test groupings if any were defined.

Test number variable contains a list of all the variables in the current data set. Any of these
could be selected to number the tests.

9 make sure that logno is selected for the Test number variable.

This changes how the tests are displayed in the rest of the Model Browser. Test number can be a
useful variable for identifying individual tests in Model Browser and Data Editor views (instead of
1,2,3...) if the data was taken in numbered tests and you want access to that information during
modeling.

7-7

7 Data Editor for Modeling

If you chose none from the Test number variable list, the tests would be numbered 1,2,3, and
so on, in the order in which the records appear in the data file. With Logno chosen, you see tests
in the Data Editor listed as 586, 587 etc.

Every record in a test must share the same test number to identify it, so when you are using a
variable to number tests, the value of that variable is taken in the first record in each test.

Test numbers must be unique, so if any values in the chosen variable are the same, they are
assigned new test numbers for the purposes of modeling (this does not change the underlying
data, which retains the correct test number or other variable).

10 Click OK to accept the test groupings defined and close the dialog box.
In the Data Editor summary tab, view the number of tests.

The number of records shows the number of values left (after filtration) of each variable in this
data set, followed by the original number of records. The color coded bars also display the
number of records removed as a proportion of the total number. The values are collected into
several tests; this number is also displayed. The variables show the original number of variables
plus user-defined variables.

Match Data to Experimental Designs
Introducing Matching Data to Designs
You can use an example project to illustrate the process of matching experimental data to designs.

Experimental data is unlikely to be identical to the desired design points. You can use the Design
Match view in the Data Editor to compare the actual data collected with your experimental design
points. Here you can select data for modeling. If you are interested in collecting more data, you can
update your experimental design by matching data to design points to reflect the actual data
collected. You can then optimally augment your design (using the Design Editor) to decide which data
points it would be most useful to collect, based on the data obtained so far.

You can use an iterative process: make a design, collect some data, match that data with your design
points, modify your design accordingly, then collect more data, and so on. You can use this process to
optimize your data collection process to obtain the most robust models possible with the minimum
amount of data.

1 To see the data matching functions, in the Model Browser, select File > Open Project and
browse to the file Data Matching.mat in the matlab\toolbox\mbc\mbctraining folder.

2 Click the Spark Sweeps node in the model tree to change to the test plan view.
Here you can see the two-stage test plan with model types and inputs set up. The global model
has an associated experimental design (which you could view in the Design Editor). You are going

to use the Data Editor to examine how closely the data collected so far matches to the
experimental design.

i
Click the Edit Data button (%) in the toolbar.

The Data Editor appears.

4 You need a Design Match view to examine design and data points. Right-click a view in the Data
Editor and select Current View > Design Match.

Manipulate Data for Modeling

In the Design Match, you can see colored areas containing points. These are “clusters” where the
matching algorithm selects closely matching design and data points.

Tolerance values (derived initially from a proportion of the ranges of the variables) are used to
determine if any data points lie within tolerance of each design point. Data points that lie within
tolerance of any design point are matched to that cluster. Data points that fall inside the
tolerance of more than one design point form a single cluster containing all those design and
data points. If no data points lie within tolerance of a design point, it remains unmatched and no
cluster is plotted.

I 1]| | .
100 F &
*
an b o
Fa¥
5 a0 f N |
| o]
g3 o s *
B0 E [S s}
a0 ol ‘ ‘
1
ar ! * ool ! .
2400 2500 2600 2700 2800 2900

SPEED

¥-awis factor: ISPEED .l *f-amiz Factor: ILEIAD vl

Notice the shape formed by overlapping clusters. The example shown outlined in pink is a single
cluster formed where a data point lies within tolerance of two design points.

On this plot, you can see other cleared points that appear to be contained within this cluster. You
track points through other factor dimensions using the axis controls to see where points are
separated beyond tolerance.

Tolerances and Cluster Information

1

To edit tolerance values, select Tolerances in the context menu.

The Tolerance Editor appears. Here you can change the size of clusters in each dimension.
Observe that the LOAD tolerance value is 100. This accounts for the elongated shape (in the LOAD
dimension) of the clusters in the current plot, because this tolerance value is a high proportion of
the total range of this variable.

7 Data Editor for Modeling

J Tolerance Editor 'T : =10l x|

SPEED 150

LOAD [
AFF [z
MaP [=2
INJ E
CAM [

QK. | Cancel | Help |

2 Click the LOAD edit box and enter 20, as shown. Click OK.

Notice the change in shape of the clusters in the Design Match view.

200 ¢
130 |

100

LOaD

a0

.50 I I I I I I)
a 1000 2000 3000 4000 2000 G000 7000

SPEED

¥-awis factor: ISF'EE[Z .I r-awis factor: ILDAD vl

3 Shift click (center-click) and drag to zoom in on an area of the plot, as shown. You can double-
click to return to the full-size plot.

00 O

L] jo @]
BO | . O
8]

40 & 8]
@ o
20
o [
D -
20F

I 1 1 I 1 1 I 1 1
400 GO0 800 1000 1200 1400 1600 1800 2000

He-axis factor: ISF'EEE vl *f-awis factor: ILD'J_\D vl

7-10

Manipulate Data for Modeling

Click a cluster to select it. Selected points or clusters are outlined in pink. If you click and hold,
you can inspect the values of global variables at the selected points (or for all data and design
points if you click a cluster). You can use this information to help you decide on suitable tolerance
values if you are trying to match points.

Notice that the Cluster Information list shows the details of all data and design points
contained in the selected cluster. You use the check boxes here to select or exclude data or
design points. Click different clusters to see various points. The list shows the values of global
variables at each point, and which data and design points are within tolerance of each other. Your
selections here determine which data to use for modeling, and which design points are replaced
by actual data points.

Understanding Clusters

If you are not interested in collecting more data, then there is no need to make sure that the design is
modified to reflect the actual data.

However, if you want your new design (called Actual Design) to accurately reflect what data has
been obtained so far, for example to collect more data, then the cluster matching is important. All
data points with a selected check box are added to the new Actual Design, except those in red
clusters. The color of clusters indicates what proportion of selected points it contains as follows:

Green clusters have equal numbers of selected design and selected data points. The data points
will replace the design points in the Actual Design.

The proportion of selected points determines the color; excluded points (with cleared check boxes)
have no effect. Your check box selections can change cluster color.

Blue clusters have more data points than design points. All the data points will replace the design
points in the Actual Design.

Red clusters have more design points than data points. These data points will not be added to your
design as the algorithm cannot choose which design points to replace, so you must manually make
selections to deal with red clusters if you want to use these data points in your design.

If you do not care about the Actual Design (for example, if you do not intend to collect more
data) and you are just selecting data for modeling, then you can ignore red clusters. The data
points in red clusters are selected for modeling.

Right-click the Design Match and select Select Unmatched Data. Notice that the remaining
unmatched data points appear in the list. Here you can use the check boxes to select or exclude
unmatched data in the same way as points within clusters.

Select a cluster, then use the drop-down menu to change the Y-Axis factor to INJ. Observe the
selected cluster now plotted in the new factor dimensions of SPEED and INJ.

You can use this method to track points and clusters through the dimensions. This can give you a
good idea of which tolerances to change to get points matched. Remember that points that do not
form a cluster might appear to be perfectly matched when viewed in one pair of dimensions; you
must view them in other dimensions to find out where they are separated beyond the tolerance
value. You can use this tracking process to decide whether you want particular pairs of points to
be matched, and then change the tolerances until they form part of a cluster.

Clear the Equal Data and Design check box in the Design Match view. You control what is
plotted using these check boxes.

7-11

7 Data Editor for Modeling

340 ¢
oo 0o

o EE
o QOOQ% Cg @O@Q’O
300 | ﬁo % o e O%QD

oo o Q
o]
O omP , & o8 & 5o o
I g o <
280 o @E) 0@k Q o %
o] o)
260 | Q% Go ESmYo o o
240 L L L L L L |
0 1000 2000 3000 4000 5000 [{ulun] Toaa
-avig factor ISF'EED vl *r-awis factor: IINJ vl
¥ + Matched Data ¥ O Matched Design W = Excluded Dats
¥ + Unmatched Data [V © Unmatched Design W+ Datain Design

™ OEqual Data and Design v O More Data than Desion [w @ Less Data than Design

This removes the green clusters from view, as shown. These clusters are matched; you are more
likely to be interested in unmatched points and clusters with uneven numbers of data and design
points. Removing the green clusters allows you to focus on these points of interest. If you want
your new Actual Design to accurately reflect your current data, your aim is to get as many
data points matched up to design points as possible; that is, as few red clusters as possible.

4 C(Clear the check box for More Data than Design. You might also decide to ignore blue clusters,
which contain more data points than design points. These design points are replaced by all data
points within the cluster. An excess of data points is unlikely to be a concern.

However, blue clusters might indicate that there was a problem with the data collection at that
point, and you might want to investigate why more points than expected were collected.

120

100 o o% <
e °
g = o
g O n
80 e © o
o

40

2200 2400 26800 2800 3000 3200 3400 3600
SPEED

A-aviz factor: ISP[.I “f-awis factor: ILD‘ vl

v

b

[V Matched Data ¥ i Matched Design W x Excluded Data
[¥ + Unmatched Data W <2 Unmatched Desionlv -+ Data in Design
™ OEqual Data and Ded” nl] More Data than DedvidllLess Data than Desigr

5 Select one of the remaining red clusters. Both of these have two design points within tolerance of
a single data point.

7-12

Manipulate Data for Modeling

6 Choose one of the design points to match to the data point, then clear the check box of the other
design point. The cleared design point remains unchanged in the design. The selected design
point are replaced by the matched data point.

Notice that the red cluster disappears. This is because your selection results in a cluster with an
equal number of selected data and design points (a green cluster) and your current plot does not
display green clusters.

7 Repeat for the other red cluster.

Now all clusters are green or blue. There are two remaining unmatched data points.

8 C(Clear the Unmatched Design check box to locate the unmatched data points. Select
Unmatched Design check box again — to see design points to decide if any are close enough to
the data points.

9 Locate and zoom in on an unmatched data point. Select the unmatched data point and a nearby
design point by clicking, then use the axis drop-down menus to track the candidate pair through
the dimensions. Decide if any design points are close enough to warrant changing the tolerance
values to match the point with a design point.

10 Recall that you can right-click the Design Match and select Select Unmatched Data to display
the remaining unmatched data points in the Cluster Information list. Here you can use the
check boxes to select or exclude these points. If you leave them selected, they are added to the
Actual Design.

These steps illustrate the process of matching data to designs, to select modeling data and to
augment your design based on actual data obtained. Some trial and error is necessary to find useful
tolerance values. You can select points and change plot dimensions to help you find suitable values. If
you want your new Actual Design to accurately reflect your experimental data, you need to make
choices to deal with red clusters. Select which design points in red clusters you want to replace with
the data points. If you do not, then these data points will not be added to the new design.

When you are satisfied that you have selected all the data you want for modeling, close the Data
Editor. At this point, your choices in the Design Match view are applied to the data set and a new
design called Actual Design is created.

All data points with a selected check box are selected for modeling. Data points with cleared check
boxes are excluded from the data set. Changes are made to the existing design to produce the new
Actual Design. All selected data is added to your new design, except those in red clusters.
Selected data points that have been matched to design points (in green and blue clusters) replace
those design points.

All these selected data points become fixed design points (red in the Design Editor) and appear as
Data in Design (pink crosses) when you reopen the Data Editor.

This means that these points will not be included in clusters when matching again. These fixed points
will also not be changed in the Design Editor when you add points, though you can unlock fixed
points if you want. This can be useful if you want to optimally augment a design, taking into account
the data you have already obtained.

7-13

7 Data Editor for Modeling

See Also

More About

. “Data Manipulation for Modeling”
. “Data Import and Processing”
. “Match Data to Designs”

7-14

Tradeoff Calibration

8 Tradeoff Calibration

Set Up and Perform a Tradeoff Calibration

8-2

A tradeoff calibration is the process of filling lookup tables by balancing different objectives.

Typically there are many different and conflicting objectives. For example, a calibrator might want to
maximize torque while restricting nitrogen oxides (NOX) emissions. It is not possible to achieve
maximum torque and minimum NOX together, but it is possible to trade off a slight reduction in
torque for a reduction of NOX emissions. Thus, a calibrator chooses the values of the input variables
that produce this slight loss in torque over the values that produce the maximum value of torque.

This example takes you through the steps required for you to set up this tradeoff, and then to
calibrate the lookup table for it.

Set Up a Tradeoff Calibration

Create a Tradeoff

Start CAGE by typing

cage

at the MATLAB prompt.

Before you can calibrate the lookup tables, you must set up the calibration.

1 Select File > Open Project (or the toolbar button) to choose the tradeoffInit.cag file, found
in the matlab\toolbox\mbc\mbctraining folder, then click OK.

The tradeoffInit.cag project contains two models and all the variables necessary for this
tutorial.

2 To create a tradeoff calibration, select File > New > Tradeoff.
This takes you to the Tradeoff view.
Add Tables to a Tradeoff Calibration
The models of torque and NOX are in the current session. Add the lookup table to calibrate.

Both models have five inputs. The inputs for the torque and NOX models are

» Exhaust gas recycling (EGR)
» Air/fuel ratio (AFR)

» Spark angle

* Speed

* Load

For this tutorial, you are interested in the spark angle over the range of speed and load.

To generate a lookup table for the spark angle,

Click @ (Add New Table) in the toolbar. This opens the Table Setup dialog box.

Set Up and Perform a Tradeoff Calibration

JRISTE
Marme: ISpark
Rows: I—‘IDE N gt I L - I
Calumns: Iw A input: m
Initial value: Iﬂ
Fill takle with: Select... |
Clear |
Ok I Cancel | Help |

Enter Spark as the table Name.

3 Check that N is the X input and L is the Y input (these are selected automatically as the first
two variables in the current Variable Dictionary).

Enter 10 as the size of the load axis (Rows).
Enter 13 as the size of the speed axis (Columns).
Click Select to open the dialog box Select Filling Item.

|x

<} Select Filling Ttem

Select the itern you wwart to fill table New 20 Table with:

Itermn | Type |
- TO_Model MBC model

-ﬂ. MOXFLOW _Madel MBC model
— List options

{* Display models

™ Display varisbles

™ Display all tems

[Cnly show items that are not filing snother takble

QK Cancel

Select the option button Display variables, then select SPK to fill the table and click OK.
7 Click OK to close the Table Setup dialog box.

Before you can perform the calibration, you must display the models.

Display the Models

For this tutorial, you are comparing values of the torque and NOX models. Thus, you need to display

these models.

To display both models:

8-3

8 Tradeoff Calibration

Click ﬂ Add Model to Display List in the toolbar twice. This moves both available models into
the Display list.

Alternatively, Shift-click to select both models in the Available Models list and click 2o
include both models in the current display. In this case, you want to include all available models.
You can click to select particular models in the list to display.

The Display Models pane following shows both models selected for display.

|Addﬂiona| Display Models |

Ayailable Models | Type | Dizplay Models | Type |
4\ TO_ModeliM, L, A, SFK.E] MEC model
‘l MORFLOW_ModelM, L. A, ... MBC model

H
Kl

Perform the Tradeoff Calibration

You now fill the lookup table for spark angle by trading off gain in torque for reduction in NOX
emissions.

The method that you use to fill the lookup table is

* Obtain the maximum possible torque.
* Restrict NOX to below 250 g/hr at any operating point.

Once you have completed the calibration, you can export the calibration for use in the electronic
control unit.

Check the Normalizers

A normalizer is the axis of the lookup table (which is the collection of breakpoints). The breakpoints
of the normalizers are automatically spaced over the ranges of speed and load. These define the
operating points that form the cells of the tradeoff table.

Expand the Tradeoff tree by clicking the plus sign in the display, so you can see the Spark table and
its normalizers Speed and Load. Click to highlight either normalizer to see the normalizer view. A
tradeoff calibration does not compare the model and the table directly, so you cannot space the
breakpoints by reference to the model.

8-4

Set Up and Perform a Tradeoff Calibration

MMormalizer (W)

It

Output

300

1000

1300

2000

2300

3000

3300

4000

4300

o m e k=D

5000

o

5300

-
=]

[=10]0]]

=y
-

G300

-
L]

Marmalizer Display

0.5

0.6

0.4

0.z

Breakpaint Spacing

2000 4000 6000

2000 4000 6000

Liarmalizer (L)

Input

Output

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

04

= e R R LR RN e =]

Marmalizer Display

Breakpoirt Spacing

02 04 0B 08 1

Set Values for Other Variables

02 04 0B 08 1

At each operating point, you must fill the values of the spark table. Both of the models depend on
spark, AFR (labeled A, in the session), and EGR (labeled E in the session). You could set the values for
AFR and EGR individually for each operating point in the table, but for simplicity you set constant
values for these model inputs.

To set constant values of AFR and EGR for all operating points,

Click Variable Dictionary in the Data Objects pane.

Click A and edit the Set Point to 14. 3, the stoichiometric constant, and press Enter.

Click E and change the Set Point to 0 and press Enter.

You have set these values for every operating point in your tradeoff table. You can now fill the
spark angle lookup table. The process is described next.

4 Click Tradeoff in the Processes pane to return to the tradeoff view.
Highlight the Spark table node in the Tradeoff tree display.

In the lower pane, check that the value for A is 14. 3, and the value for E is 0, as shown in the
following example. You leave these values unchanged for each operating point.

For each operating point, you change the values of spark to trade off the torque and NOX objectives;
that is, you search for the best value of spark that gives acceptable torque within the emissions

8 Tradeoff Calibration

constraint. The following example illustrates the controls you use, and there are step-by-step
instructions in the following section.

Tradeu.ffs Table: Spark Selected cell: Optimization: |=none=
@ Project Filed by: SPK L=01, N=>500
=-5m Mew_Tradeoff 0 100c Objective | Optimization| | Table
B : »
i1 NNormalizer 0.1 i Open Run Initialize
i._{_ LMormalizer 02 v 4 @
< > “ 4 * Constraint Summary for Lookup Tables
+ |nputz h Exti latio._. 1 Name De=cription Constraint Value | Left Vi
puts have rfapn atio i 200040005000
5 Locked tabl.. [Region mask N
N
[Extrapolatio... <
Value: 20 1
5.49 =k
10 I =
_ Al — T A —
g o0 N 1 T
= A |
g -10 i
=
o 1
- |
30 1
Value: 300 1
0.7268 i
3 |
= 200
| 1
5 I
s i
é 100 |
=z
1
-
old : —
- > -
12 14 16 [1] 0 20 30 40 50| O 5 10
A SPK E
14315 0rs 0=

Fill Key Operating Points
You now fill the key operating points in the lookup table for spark angle.

The upper pane displays the lookup table, and the lower pane displays the behavior of the torque and
NOX emissions models with each variable.

The object is to maximize the torque and restrict NOX emissions to below 250 g/hr.

At each operating point, the behavior of the model alters. The following display shows the behavior of
the models over the range of the input variables at the operating point selected in the table, where
speed (N) is 4500 and load (L) is 0.5. You can show confidence intervals by selecting View > Display
Confidence Intervals.

8-6

Set Up and Perform a Tradeoff Calibration

Value:
23.14

Walue:

58.5

MO FLOWY_Mod

10040

=100 -

T
| T P
o ... i i SHRE o B e
T~ //; i —
' _ - [
) I
|
]
I
I B
I B
1 rd
i s
1 N : T i TR ST S R - -
I
¥ - v ——— v " —~ r r h r v . v v v
11 12 13 14 15 16 17 0O 10 20 3 40 5|0 2 4 6 8 10 12
A SPK E
1432 0% 0%

The top three graphs show how the torque model varies with the AFR (labeled A), the spark angle
(SPK), and the EGR (E), respectively. The lower panes show how the NOX emissions model varies with
these variables.

You

are calibrating the Spark table, so the two spark (SPK) graphs are green, indicating that these

graphs are directly linked to the currently selected lookup table.

1
2

Select the operating point N = 4500 and L = 0.5 in the lookup table.

Now try to find the spark angle that gives the maximum torque and restricts NOX emissions to
below 250 g/hr. You can change the value of spark by clicking and dragging the orange line on
the SPK graphs, or by typing values into the SPK edit box. You can change the values of any of the
other tradeoff variables in the same way, but as you have already set constant values for A and E
you should not change these. Try different values of spark and look at the resulting values of the
torque and NOX models.

Click to select the top SPK - TQ Model graph (TQ Model row, SPK column). When selected the
graph is outlined as shown in the following example.

Now click 'Find maximum of output' (E) in the toolbar. This calculates the value of spark that
gives the maximum value of torque. The following display shows the behavior of the two models
when the spark angle is 26 . 4458, which gives maximum torque output.

8 Tradeoff Calibration

8-8

Torque model behavior

99% Confidence interval
for the torque model

=—— NOX model behavior

SPK Value of spark

26.4958

.
-

At this operating point, the maximum torque that is generated is 48.136 when the spark angle is
26.4989. However, the value of NOX is 348.968, which is greater than the restriction of 250
g/hr. Clearly you have to look at another value of spark angle.

Click and drag the orange bar to change to a lower value of spark. Notice the change in the
resulting values of the torque and NOX models.

Enter 21.5 as the value of SPK in the edit box at the bottom of the SPK column.

The value of the NOX emissions model is now 249. 154. This is within the restriction, and the
value of torque is 47.2478.

At this operating point, this value of 21.5 degrees is acceptable for the spark angle lookup table,
so you want to apply this point to your table.

Press Ctrl+T or click @ (Fill lookup tables with current tradeoff values and save) in the toolbar
to apply that value to the spark table.

This automatically adds the selected value of spark to the table and turns this cell yellow. It is
blue when selected, yellow if you click elsewhere. Look at the table legend to see what this
means: yellow cells have been added to the extrapolation mask, and the tick mark indicates that
you saved this input value by applying it from the tradeoff. You can use the View menu to choose
whether to display the legend.

Now repeat this process of finding acceptable values of spark at four more operating points listed
in the table following. In each case,
* Select the cell in the spark table at the specified values of speed and load.

* Enter the value of spark given in the table (the spark angles listed all satisfy the
requirements).

Set Up and Perform a Tradeoff Calibration

Press Ctrl+T or click @ (Fill lookup tables with current tradeoff values and save) in the
toolbar to apply that value to the spark table.

Speed, N Load, L Spark Angle, SPK
2500 0.3 25.75

3000 0.8 10.7

5000 0.7 8.2

6000 0.2 41.3

Fill the Table by Extrapolation

When you have calibrated several key operating points, you can produce a smooth extrapolation of
these values across the whole table.

When you apply the value of the spark angle to the lookup table, the selected cell is automatically
added to the extrapolation mask. This is why the cell is colored yellow. The extrapolation mask is the
set of cells that are used as the basis for filling the table by extrapolation.

Click ¥ in the toolbar to fill the table by extrapolation.
The lookup table is filled with values of spark angle.

The following figure displays the view after extrapolation over the table.

8-9

8 Tradeoff Calibration

Table: Spark Selected cell: Optimization: | <none:
Filled by: SPK L =0.7, N = 5000
Mhirrtivea Mntimizatinn Tahla
5000 550 ¥
01 SUsy & oA B0 Ctpen Run Inttialize
n-r A7 N AT W E 40
< > & :
¥ Constraint Summary for Lookup Tables
Y ek ek ER——— ! 05 6000 Mame Description Constraint Value | Left V'
& Locked tabl... [] Region mask i 2000 i
Ea Eﬁrapulatik < b]
Value:
58.72 &0 B e e
| [O T R R T
[I " R4
&0 — E : ? -
¢ ~—
o e
i 40
20
Value:] i
2487 ; i :
E 4000 | i i
gl i i
=1 2000 i ,f
C e
é | Rt et
Z oM T s (iR e
i
- X, - >, : ; ; ; -
12 14 16 0 1005303004080 0 & 10
A SPK E
1435 8305 2220446045

Note Not all the points in the lookup table will necessarily fulfill the requirements of maximizing
torque and restricting the NOX emissions.

Export Calibrations
To export your table and its normalizers:

Select the Spark node in the branch display.
Select File > Export > Calibration.

Choose the file type you want for your calibration. For the purposes of this tutorial, select Comma
Separated Value (.csv).

4 Enter tradeoff.csv as the file name and click Save.

This exports the spark angle table and the normalizers, Speed, and Load.

8-10

Set Up and Perform a Tradeoff Calibration

See Also

More About
. “Calibration Setup”
. “Tradeoff Calibration”

8-11

Data Sets

9 Data Sets

Compare Calibrations To Data

9-2

Setting Up the Data Set

You can use the Data Sets view in CAGE to compare features, tables, and models with experimental
data. You can use data sets to plot the features, tables, etc., as tabular values or as plots on a graph.

Data sets enable you to view the data at a set of operating points. You can determine the set of
operating points yourself, using Build Grid. Alternatively, you can import a set of experimental data
taken at a series of operating points. These operating points are not the same as the breakpoints of
your tables.

This tutorial takes you through the basic steps required to compare a completed feature calibration to
a set of experimental data.

Start CAGE by typing
cage
To set up the data set tutorial, you need to

1 Open an existing calibration on page 9-2.
2 Import the experimental data on page 9-2.
3 Add on page 9-4 the Torque feature to the data set.

Your data set contains all the input factors and output factors required. As the imported data contains
various operating points, this information is also included in the data set.

Opening an Existing Calibration

For this tutorial, use the file datasettut. cag, found in the matlab\toolbox\mbc\mbctraining
directory.

To open this file,

Select File > Open Project.
2 In the file browser, select datasettut.cag and click Open.

This opens a file that contains a complete calibrated feature with its associated models and
variables. This particular feature is a torque calibration, using a torque table (labeled T1) and
modifiers for spark (labeled T2) and air/fuel ratio (labeled T3).

3 Select File > New > Data Set to add a new data set to your session.

This automatically switches you to the Factor Information pane of the data set display.
Importing Experimental Data into a Data Set

To import data into a data set,

1 Select File > Import > Data > File.

2 In the file browser, select meas tq data.xls from the mbctraining directory, and click
Open.

Compare Calibrations To Data

J Data Set Import Wizard | _ Ol x|
— Match data columns in right izt to project expressions n left kst

Mate: Unazzigned colurmnz will be treated a5 output data

This set of data includes six columns of data, the test cell settings for engine speed (RPM), and the
measured values of torque (tgmeas), engine speed (nmeas), air/fuel ratio (afrmeas), spark angle
(spkmeas), and load (Loadmeas).

The Data Set Import Wizard asks which of the columns of data you would like to import. Click
Next to import them all.

The following screen asks you to associate variables in your project with data columns in the
data.

Highlight afr in the Project Assignments column and afrmeas in the Data Column, then
click the assign button, shown.

<

Repeat this to associate Load with Loadmeas, n with RPM, and spk with spkmeas. The dialog
box should be the same as shown.

Project Azzignments Diata Columnz
Project | Data Column Name | Column
X alr afimeas X afimeas 4
X load loadmeas X loadmeas
xn RFM 7 NMEas 2
X zpk spkmeas PR x RPM 1
T % | spkmeas 5
"'-§ tgmeas E
1] | H | | »]

™ Show all expressions

< Back | Finish | Cancel

6

Assign button
Click Finish to close the dialog box.

Note If you need to reassign any inputs after closing this dialog you can click E in the toolbar
or select Data > Assign.

9-3

9 Data Sets

Adding an Item to a Data Set
To add the Torque feature to the data set,

1 Highlight the Torque feature in the lower list of Project Expressions.
2 Select Data > Factors > Add to Data Set.

This adds two objects to the data set: Torque: Model and Torque: Strategy. These two objects
make up the Torque feature.

* Torque: Model is the model used as a reference point to calibrate the feature.
* Torque: Strategy is the values of the feature at these operating points.

When these steps are complete, the list of factors includes four input factors and four output factors,

as shown.
. CAGE Browser - datatsettutl.cag =10l =]
File Edit ‘iew Data Tools window Help L
D@E[X|#F”"[EDk @ =R
Proceszes Diata Sets | Diata Set Factors
T meas_tq data | Factor | Status | Infarmation
Xn Fh5 Input
X load @D Input
Feature X afr % Input
X zpk @D |hpLt
A nmeas QOutput; Data
Ftgmeas Output: Data
¥y Tarque: Model TP Output: Feature
?&anque: Strateqy TP Output: Feature
| | |
Project Expressions |
E wpreszzion | Tupe | Information
x afr Wariahle In data zet
X load ‘ariable In data zet
X n Wariahle In data zet
X =pk Wariable In data zet
i1 2D Table
/12 1D Table
/13 10 Table
A TORGUE MEC model
i& Targue: Maodel Feature Ih data zet
¥y Tarque: Strategy Feature In data zet
4 [*]]4] | |
|

9-4

Compare Calibrations To Data

Comparing the Items in a Data Set
Viewing the Data Set as a Table

By viewing the data set, you can compare experimental data with calibrations or models in your
project.

Click E in the toolbar to view the data set as a table of values.

@n- n @n- load @n- afr @n- spk Nmeas tgmeas TPk Torgue: Model| IF Torque: Strategy

1 2235 0.549 95 01 2247 BE.7 71 BEG
2 3591 0.454 13.2 0.1 3613 541 47 163
3 4345 0651 12 01 4374 737 47 573
4 G851 0645 11.9 2.7 G851 758

5 2234 0.441 133 01 2247 554 51 256
[3591 0.747 10.9 0.1 3612 g0 92 837
T 4347 0.541 a7 01 4373 G628

] G851 0622 9.9 0.1 G54 721 7E.195
9 1218 0.333 14 01 1224 418 33226
10 15955 0.352 12 0.1 1867 49.4 40.457
11 1896 0.209 107 33 1906 285

12 2234 0.254 9.5 3.2 2245 36 23063
13 2574 0.407 134 3 2588 439 49 629
14 2914 0.595 11.5 3.1 2929 705

15 3251 0.7a1 12.3 31 3268 05 117 424
16 3589 0665 13.5 3 3605 A 87 957
17 3930 0.452 119 31 3952 527 46 511
18 4265 0.235 10.9 3 4293 257

19 4606 0194 12 32 4633 213

In the table, the input cells are white and the output cells are grey. Select the Torque: Strategy
column header to see the view shown. The selected column turns blue and the column headers of the
strategy's inputs (n, Lload, afr and spk) turn cream. Column headers are always highlighted in this
way when they are associated with the currently selected column (such as model inputs, strategy
inputs or linked columns).

In addition to viewing the columns, you can use data sets to create a column that shows the
difference between two columns:

1 Select the tgmeas and Torque: Strategy columns by using Ctrl+click.
2 Select Create Error from the right-click menu on either column header.

This creates another column that is the difference between tqmeas and Torque: Strategy. Note
that all the columns that are inputs to this new column have highlighted headers.

9 Data Sets

= Goload | Boafr | o zpk | nmess | tgmeas |k Torgue: Model| I Torque: Strategy| 1P tgmeas _minus_Torgue
1 2235 0.245 9.5 0.1 2247 BE.7 71 .BEE BE.079
2 3581 0.454 132 01 3613 541 47 163 46.591
3 4945 0.651 12 0.1 4974 737 47 573 79.256
4 881 0.645 118 57 a1 758 9925 80.211
5 2234 0.441 133 0.1 2247 229 21256 43152
13 3581 0.747 108 01 3612 a0 92837 105 586
[4947 0.541 a7 0.1 4973 E28 2776 27 557
8 881 0622 93 01 G54 7241 76.1958 60.926
9 1219 0.333 14 0.1 1224 41.8 33226 21318
10 1558 0.382 12 01 1567 49.4 40.457
11 18896 0.208 107 3.3 1906 285 3.492
12 2234 0.284 95 3.2 >245 36 23063
13 2574 0.407 134 3 2555 499 49629
14 2914 0.595 115 31 2929 705 84 65 .
15 3251 0.781 123 31 F265 0.5 117 424 117.259
16 3589 0.665 135 3 3605 77 87 957
17 3930 0.452 119 31 3952 227 45.511
18 4268 0.235 1089 3 4293 7 5.253
19 45068 0.194 12 3.2 4633 M3 -2 083
The error column is simply the difference between tqmeas and Torque: Strategy. This provides a
simple way of comparing the feature and the measured data.
Viewing the Data Set as a Plot
Click or select View > Plot to view the data set as a plot.
The lower pane lists all the output expressions in the data set and in the project.
2 Use Ctrl+click to select tgmeas and Torque: Strategy from the lower list.
® Tomque: Stategy
& lgmeas
Torgue : Strategy, tgmeas v n
120i- ‘
1] IR SO e L S .o . : _______ FR PI o o
* : : . Y : : - : : L
a0 Lo *E. .. L] L Lo &
2 5 . 8 : : - : :
£ L : ") : : ' : :
E BD P P , ,
3 * . 1 I
T) S [T F, o e S A v
' .. 5 :
: L L :
0 &% ... e B T -, R CEEEER
D I I_i. | I I I I I I i
1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 G000
n
x-andis factor: In j y-endis factor: I{Selec‘tinn} j

9-6

3

Change the x-axis factor to n from the drop-down menu.

Compare Calibrations To Data

This displays the calibrated values of torque from the feature, and the measured values of torque
from the experimental data, against the test cell settings for engine speed.

Clearly there is some discrepancy between the two.

Displaying the Error

View the error between the calibrated and measured values of torque.

CAGE Browser - datatsettutl.cag 35;;'.1' -0 =]
File Edit Wew Data Tools “Window Help &
Ded X F2” | ED-® hed
Processes Dsta Sets | Absohite Relative Error (%) (tgmeas - Torgue) v n

= - = o » :

Feature = 100 _,

N E il i imE

!!ﬁ‘.ﬁ w_;g...

Tradeoff & :

E 60 , ik AR R R
4. "-‘ . : 5

"J g 4u._' ' 5 LRI L RE R AL

Ciptimization L .)
20 e ik ERRRRRE* 'RREEE SRN . """ & SOV .i.
:i il § $ o
L i i L. | -
1000 2000 3000 4000 5000 &000
n
x-mdafndu:ln '| yﬂsm:m
Output Expressions (Project and Data Set) .l"
Expression | Type || Information =
/13 1D Table
4\ TORQUE MBC moded
h Torque: Model Feature In data zet
h Torque: Shrateqgy Feature In data zet
Etgmeas Data Set
D tomeas_minus_Tonque Data Set Sum - bgme__
ll -

1| | » 2] | i
!
1. Select tgmeas_minus_Torgue. 2. Select Absolute Relative Error
(tgmeas - Torgue).

9 Data Sets

1 Select tgmeas minus Torque from the lower list (Output Expressions).

2 For the y-axis factor, select Absolute Relative Error (tgmeas - Torque) from the
drop-down menu.

As you can see, there seems to be no particular correlation between engine speed and the error in the
calibration.

Coloring the Display

1 Select Color by Value from the right-click menu on the graph.
2 From the Color by drop-down menu, select load.

In this display, you can see that some of the low values of load display a high error.

Limiting the Range of the Colors

0.85

0.74 .
| Adjust the maximum

/ value of the range.

Vi
{0 62
'Y e Adjust the mid
- 0.5 value of the range.

| Adjust the minimum
value of the range.

v Li -
I-\I'"i s | Limitrange
Color by: check box

| [ovad - I

To view the colors in more detail, you can limit the range of the colors:

1 Select the Limit range box (or you could right-click the graph and select Restrict Color to
Limits).

2 Set the minimum value of the color range to be as low as possible by dragging the minimum
value down.

9-8

Compare Calibrations To Data

3 Set the maximum value of the color range to be around 0.4.

As the low values of load are causing large errors, it would be wise to reexamine the calibration,
particularly at small values of Load.

Reassigning Variables

You can alter the data set by changing which variables are used for project expressions.

Instead of using the test cell settings for the engine speed (RPM), you might want to use the measured
values of engine speed (nmeas). So you have to reassign the variable n to nmeas.

To reassign n,

1
Click E or select Data > Assign.

2 Inthe dialog that appears, select n from the Project Assignments pane and nmeas from the
Data Columns pane.

3 Click the assign button.

) Data Set Assign ;lglﬂ

— Match data columng in right list to project expressions in left list
Mote: Unassigned columng will be treated as output data
Froject dezignments Drata Columng
Praject | [rata Calurin M arne | Colurnn
X afr afimeas X afrmeas 4
X load loadmeas X Iloadmeas 3
Xn nmeag o X nmeas 2
X spk spkrmeas &« RPr 1
X spkmeaz b
® tgmeas B
< | B <] | +]
[Show all expressions

}Assigning nmeas to n; unassigning data column BPM. 0K Caricel

See Also

More About
. “Data Sets in CAGE”
. “Feature Calibration”

9-9

Filling Lookup Tables from Data

10 Filling Lookup Tables from Data

Fill Lookup Tables from Data

10-2

Setting Up a Lookup Table and Experimental Data

If you are considering a straightforward strategy, you might want to fill lookup tables directly from
experimental data. For example, a simple torque strategy fills a lookup table with values of torque
over a range of speed and relative air charge, or load. You can use CAGE to fill this strategy (which is
a set of lookup tables) by referring to a set of experimental data. You can also fill lookup tables with
the output of optimizations.

This tutorial takes you through the steps of calibrating a lookup table for torque, based on
experimental data.

Start CAGE by typing
cage
First, set up a blank lookup table ready for filling using experimental data or optimization output.

1 Add the variables on page 10-2 for speed and load by importing a variable dictionary.
2 Add a new table on page 10-2 to your session.
3 Import your experimental data on page 10-4.

Add Variables

Before you can add lookup tables to your session, you must add variables to associate with the
normalizers or axes.

To add a variable dictionary,

1 Select File > Import > Variable Dictionary.
2 Select table filling tutorial.xml from the matlab\toolbox\mbc\mbctraining folder.

This loads a variable dictionary into your session. The variable dictionary includes:

* N, the engine speed

* L, the relative air charge

* A, the air/fuel ratio (AFR)

* stoich, the stoichiometric constant

You can now add a lookup table to your session.
Add a New Lookup Table

First, add a lookup table to fill.

1 Select File > New > 2D Lookup Table.

This opens a dialog box that asks you to specify the variable names for the normalizers. As you
can see in the dialog box controls, accepting the defaults creates a lookup table with 10 rows and
10 columns with an initial value of 0 in each cell.

2 Change the number of columns to 7.

Fill Lookup Tables from Data

3 Select L as the variable for normalizer Y and N as the variable for normalizer X, then click OK.

CAGE takes you to the Lookup Tables view.

E CAGE Browser
File Edit View Table Teols Window Help
@BDEE %W eaFR | |E 888 [
Processes | Lookup Tables | 1500
- | &84 untitled
i Newsariane
i_.:f_ NNormalizer
i'_"{ LHarmalizer
14 v i
Data Objects |
D
7
4 G
Ready

CAGE has automatically initialized the normalizers by spacing the breakpoints evenly across the
range of values for the engine speed (N) and load (L). The variable ranges are found in the variable
dictionary. Switch to the Normalizer view to inspect the normalizers.

Expand the lookup table branch by t NNormalizer as shown.

Lookup Tables
Untitled
E-dge New_20_Table
1_.,:’_ MMormalizer
L..fp Liormalizer

This displays the two normalizers for the lookup table.

10-3

10 Filling Lookup Tables from Data

You have an empty lookup table with breakpoints over the ranges of the engine speed and load, which
you can fill with values based on experimental data.

Import Experimental Data

To fill a lookup table with values based on experimental data, you must add the data to your session.
If you want to fill a lookup table with the output of an optimization, the output appears automatically
in the Data Sets view as a new data set called Exported Optimization Data when you select the
Export to Data Set toolbar button. For this tutorial, you need some experimental data.

CAGE uses the Data Sets view to store grids of data. Thus, add a data set to your session.

Select File > New > Data Set to add a data set to your session. This changes the view to the Data
Set view.

You can now import experimental data into the data set:

Select File > Import > Data.
2 In the file browser, select meas tq data.csv from the matlab\toolbox\mbc\mbctraining
folder and click Open.

This set of data includes six columns of data: the test cell settings for engine speed (RPM), and
the measured values of torque (tgmeas), engine speed (nmeas), air/fuel ratio (afrmeas), spark
angle (spkmeas), and load (Loadmeas).

3 This opens the Data Set Import Wizard. The first screen asks which of the columns of data you
want to import. Click Next to import them all.
The following screen asks you to associate variables in your project with data columns in the
data.

4 Highlight N in the Project Assignments column and nmeas in the Data Column, then click the
assign button, shown.

ﬂ

5 Repeat this to associate L with Loadmeas. The dialog box should be the same as the following.

10-4

Fill Lookup Tables from Data

4. Data Set Import Wizard — O *
Match data columns in right lizt to project expressions in left list.
Note: Una=ssigned columns will be treated as output data.
Project Assignments Data Columns
oject £ Data Column Name / Column
PA afrmeas 4
Il loadmeas A lvadmeas 3
'N nmeas X nmeas 2
RPK 1
spkmeas 5
tgmeas =]
£ >
|:| Show all expressions
<- Back Finish Cancel

6 Click Finish to close the dialog box.

You now have an empty lookup table and some experimental data in your session. You are ready to fill
the lookup table with values based on this data.

Fill Lookup Table from Experimental Data

You have an empty lookup table and the experimental data in your session. You can now fill the
lookup table with values based on your data.

The data that you have imported is a series of measured values of torque at a selection of different
operating points. These operating points do not correspond to the values of the breakpoints that you
have specified. The lookup table has a range of engine speed from 500 revolutions per minute (rpm)
to 3500 rpm. The range of the experimental data is far greater.

CAGE extrapolates the values of the experimental data over the range of your lookup table. Then it
fills the lookup table by selecting the torque values of the extrapolation at your breakpoints.

To fill the lookup table with values based on the experimental data,

To view the Lookup Table Filler display, click E in the toolbar in the Data Sets view; or select
View > Lookup Table Filler.

10-5

10 Filling Lookup Tables from Data

L (table axis)

10-6

You can use this display to specify the lookup table you want to fill and the factor you want to use
to fill it.

In the lower pane, select New 2D Table from the Lookup table to fill list.

Select tgmeas from the Factor to fill lookup table list. This is the data that you want to use to
fill the lookup table.

4 Select N from the X-axis factor list and L from the Y-axis factor list. Your session should be
similar to this.

1.000 Filling table Mew 20 Table, from factor tgmeas

T T T T T T
09% x x * - » » o i
08% 9 “@ ® ae = . . ® s
0.7 % b S x F * g ° |
06% !x = ® = . * ® n
05% P X x« x ® . . *
043 * iy * L =il * * * .
03% x By EE x * 4
0.2% " x o= " * * L - 4
{}1 | | | | | |
500.0 1000 1500 2000 2500 3000 3500
M (table axis)
X-axis factor: N e -axis factor: |L e
Lookup table to fill Factor to fill lookup table
Lookup Table # Inputs Factor # Information
Lﬁ Mew_2D_Table M, L. FH afrmeas
X L
X N

] RPM

FEH =pkmeas

Gtgmess |

< > £ >

Lookup table filing rules {optional)

Click and drag over Data Set plot to create rules

Show lookup table history after fill Fill

The upper pane displays the breakpoints of your lookup table as crosses and the operating points
where there is data as blue dots. Data sets display the points in the experimental data, not the
values at the breakpoints. You can inspect the spread of the data compared to the breakpoints of
your lookup table before you fill the lookup table.

Fill Lookup Tables from Data

To view the lookup table after it is filled, ensure that the Show lookup table history after fill

box, at the bottom left, is selected.
To fill the lookup table with values of tqmeas extrapolated over the range of the normalizers,

click Fill.

This opens the History dialog box

[#] History for Mew_2D_Table — O ¥
. Reset
1| Initial configuration 04-0ct-2019 16:16:50 Add...
Remove
Edit...
Clear

[] Reset normalizer

L \'l N 500 1000 1500 2000 2500 3000 3500

0.1 12.245 13.471 14.637 15.084 14.622 13.805 13.044
0.2 23.802 25.336| 26.54 27.322 259 24 344 23.6597
0.3 35.14 36.987) 38.912 38.876| 36.588 33.439 31.511
0.4 45.028 48.217) 51.119 51.517 45.45 45.317) 40.169
0.5 56.839 58.411 B80.752 62.257) 62.139 61.779 62.486
0.6 68.654 69.387| 65.545 69.367| 65.788 71.364 68.274
0.7 79.019 79.285 78.65 76.015 75.705 &2.919 85.571
0.8 B88.482 88.409 52.981 B88.575 52.016 51.03] 53.019
0.9 104.147 108.258) 110.804 114.302) 112,183 107.478) 107.431

1 121.64 123.967) 126.968 128.007 128.826 127.685 127.643

7 Click Close to close the History dialog box and return to the Lookup Table Filler display.

8

To view the graph of your lookup table, as shown, select Data > Plot > Surface.

Close Help

Filling tabla New_20_Tabla, from factor lgmeas

10-7

10 Filling Lookup Tables from Data

10-8

This display shows the lookup table filled with the experimental points overlaid as purple dots.

The lookup table has been calibrated by extrapolating over the values of your data and filling the
values that the data predicts at your breakpoints.

Notice that the range of the lookup table is smaller than the range of the data, as the lookup table
only has a range from 500 rpm to 3500 rpm.

The data outside the range of the lookup table affects the values that the lookup table is filled with.
You can exclude the points outside the range of the lookup table so that only points in the range that
you are interested in affect the values in the lookup table.

Select Data Regions
You can ignore points in the data set when you fill your lookup table.

For example, in this tutorial the experimental data ranges over values that are not included in the
lookup table. You want to ignore the values of engine speed that are greater than the range of the
lookup table.

To ignore points in the data set,

1 Select Data > Plot > Data Set. This returns you to the view of where the breakpoints lie in
relation to the experimental data.

2 To define the region that you want to include, left-click and drag the plot. Highlight all the points
that are included in your lookup table range, as shown.

Filling takle Meww 20 Table, from factor tgmeas
100% - - - e A B et e B R .
pank ... x Koo oo ; 8 ﬁ PR Cheeee LTI I o
DBD R T TR R I W 2 S T I
(e : ol L 3 Ty o ©
w00 |- Heeoeeoes Bt o e e ¥ g M
R S e N NP el e
L' L : A : e o]
- 0504 - .x B EEERIe e e KDO e
3 ISITIE T S x y' a}:----'----'x. R x ...
0o fo-o - x'x g.........x [T
0204 |- on x B .;? G e :.< 2 r R T PP PP PR
040] ' i k & ik
500.00 100000 150000 200000 250000 300000 3500.00
H (table axis)
w-gxis factor: IN d y-axis factor: ||_ d

3 To fill the lookup table based on an extrapolation over these data points only, click Fill. This
opens the History display again.

4 In the History display, select version 2 and 3, using Ctrl+click. The following display shows a
comparison between the lookup table filled with two different extrapolations.

Fill Lookup Tables from Data

4] History for Mew_2D_Table — O *
Version | Comment / Action Date and Time Re=zat
3| Values filled from data set meas_tg_data, factor tgmeas
2| Values filled from data =et meas_tq_data, factor tgmeas i Add
1| Initial configuration 0&-0ct-2019 18:16:50
Remove
Edit...
Clear
D Reset normalizer
L ‘-l N 500 1000 1500 2000 2500 3000 3500
0.1 -0.546 -0.459 -0.819 -2.581 -8.146 -15.178 -22.285
0.2 -0.11 0.087] 0.38) -0.827 -4.705 -11.148 -19.033
0.3 -0.024 -0.023 0.734 0.83] -0.93 -4 744 -11.835
0.4 0.125 -0.302 -0.126 0.341 0.083) 0.078 -1.831
0.5 0.307 0.01 0.401 0.203] -0.651 -1.355 -0.751
0.6 -0.138 0.162] 1.424 1.255) -0.513 -0.358| -0.55
0.7 0.013 0.356 2.564 3.815 0.021 -2.374 -3.074
0.8 -0.185 -1.112 -0.22 -0.597 0.347 1.168) 0.749
0.9 -4.612 -5.8569 -4.211 -1.742 -0.536 -1.945 -4.051
1 -9.123 -9.353 -5.858 -3.88| -4.057 -7.952 -11.229
Close Help
5 Click Close to close the History viewer.

6

Select Data > Plot > Surface to view the surface again.

The display of the surface now shows the lookup table filled only by reference to the data points that
are included in the range of the lookup table.

You have filled a lookup table with values taken from experimental data.

Export the Calibration

To export the calibration:

1

To highlight the lookup table that you want to export, click Lookup Tables.

Highlight the New 2D Tab'le.
Select File > Export > Calibration > Selected Item.

Choose the type of file you want to save your calibrations as. For the purposes of this tutorial,
select Comma Separated Value (.csv).

Enter table filling tutorial.csv as the file name and click Save.

10-9

10 Filling Lookup Tables from Data

See Also

More About

. “Manipulate Models in Data Set View”
. “Export Data Sets”

10-10

Optimization and Automated Tradeoff

11 Optimization and Automated Tradeoff

Optimization and Automated Tradeoff

11-2

Import Models to Optimize

To open the CAGE browser and set up your optimization:
1 Start the CAGE Browser part of the Model-Based Calibration Toolbox product by typing

cage

2 Ifyou have not imported models, click Import Models. After you have imported models, you can
optimize them.

For any optimization, you need one or more models. You can run an optimization at a single point,
or you can supply a set of points to optimize. The steps required are:
a Import a model or models.
b Set up a new optimization.
3 If you have imported models, click Optimization in the Processes pane.

|

Cptitmization

You can use the Optimization view to set up, run, view, and export optimizations. You must also set
up optimizations here in order to use them for automated tradeoff.

When you first open the Optimization view both panes are blank until you create an optimization.
After you set up your optimizations, the left Optimization pane shows a tree hierarchy of your
optimizations, and the right hand panes display details of the optimization selected in the tree, as
with other CAGE processes.

The following tutorial guides you through this process to evaluate this optimization problem: MaxTQ
(SPK, N, L).

That is, find the maximum of the torque model (TQ) as a function of spark (SPK), engine speed (N),
and load (L). You will use the NOXFLOW model to constrain these optimization problems.

For any optimization, you need to load one or more models. You can use the CAGE Import tool to
import models from Model Browser projects. For this tutorial you can load a CAGE project from the
mbctraining directory that contains two models for the optimization problems. Load the project
containing models to optimize as follows:

1 Select File > Open Project to choose the tradeoffInit.cag file, found in the matlab
\toolbox\mbc\mbctraining directory, then click OK.

The tradeoffInit.cag project contains two models and all the variables necessary for this
tutorial.

2 CAGE displays the Models view. You can view your models at any time by clicking the Models
button in the Data Objects pane.

Optimization and Automated Tradeoff

Models

Observe that the project you have opened contains two models: TQ Model and NOXFLOW Model.
In this tutorial you use these models to optimize torque values subject to emissions constraints.

3 To view the items in the Variable Dictionary, click the Variable Dictionary button in the Data
Objects pane.

The Variable Dictionary view appears, displaying the variables, constants, and formulas in the
current project. The project already has the relevant variables defined, so you do not need to
import a variable dictionary. Note that the variables have ranges and set points defined.

See Also

More About

. “Calibration Setup”
. “Import Models and Calibration Items Using CAGE Import Tool”

11-3

EM-Sourced Examples

12 EMm-Sourced Examples

Create Local Designs

This example shows how to use the command-line functionality to create local designs at each global
operating point. This particular example shows how you can produce local maps for a diesel engine
calibration.

Create Project and Test Plan

Speed (N) and fuel (F) are global inputs. Injection (soi), fuel pressure (fuelpress), variable geometry
turbo rack position (grackmea) and exhaust gas recirculation (EGR) are local inputs.

project = mbcmodel.CreateProject('DieselMulti');

% Define Inputs for test plan

LocalInputs = mbcmodel.modelinput('Symbol"',{'S",'P','G","E'}, ...
'Name',{'soi', 'fuelpress', 'grackmea', 'egrlift'}, ...
'Units',{'deg', 'MPa', 'ratio', 'mm'}, ...
'Range',{[-9 3],[60 160],[0.2 0.9],[0.5 5

GlobalInputs = mbcmodel.modelinput('Symbol',{
"Name',{'measrpm', 'basefuelmass'}, ...
"Units',{'rpm', 'mg/stroke'}, ...
'Range',{[1600 2200],[20 200]});

% create test plan

TP = CreateTestplan(project, {Locallnputs,GlobalInputs});

1h;
'‘N','F'}, ...

Global Design

Generate a 15 point Latin Hypercube Sampling (LHS) design for the global inputs.

globalDesign = TP.CreateDesign(2, 'Type', 'Latin Hypercube Sampling');
Fuel constraint: Maximum 200 at 1600 rpm, 175 at 2200 rpm
= globalDesign.CreateConstraint('Type','1D Table');

set up the 1D Table constraint

.InputFactor 'N';

.Breakpoints [1600 2000];

.TableFactor '"F';

.Table = [200 175];

assign constraint to design

globalDesign.Constraints = C;

% generate a 15 point design

globalDesign = Generate(globalDesign, 15);

% set as best design in test plan

TP.BestDesign{2} = globalDesign;

XX OO O O °

Create a Local Design for Each Global Point

For each global point, adjust limits for fuel pressure and grackmea, and generate a 30 point LHS
design.

% create a local design
localDesign = TP.CreateDesign(1, 'Type', 'Latin Hypercube Sampling');
localDesignGenerator = localDesign.Generator;
localDesignGenerator.NumberOfPoints = 30;
DList = mbcdoe.design.empty(0, 1);
for i = 1:globalDesign.NumberOfPoints;

GlobalPoint = globalDesign.Points(i,:);

speed = GlobalPoint(1l);

12-2

Create Local Designs

end

[}

fuel pressure limits dependent on speed

= (speed-1600)/(2200-1600) ;

note because you use the Limits property to specify the input range
you get LHS designs with exactly 30 points.
localDesignGenerator.Limits(2,:) = (1-f)*[90 120] + f*[110 160];

% grackmea limits dependent on speed

localDesignGenerator.Limits(3,:) = (1-f)*[0.2 0.4] + f*[0.6 0.9];

o° 0% —h o°

% set design properties and generate local design
localDesign.Generator = localDesignGenerator;

% Make design name which reflects the global point

localDesign.Name = sprintf('Test %2d (%s5=%4.0f,%s=%3.0f)"', 1i,...
GlobalInputs(1l).Symbol,GlobalPoint(1),....
GlobalInputs(2).Symbol,GlobalPoint(2));

% Plot Design
Scatter2D(localDesign);

DList(i) = localDesign;

160 T T

150 1

140 T . * T

130 ' . 4

120 - 1

=&

=

=
T
L]
I

100 7

fuelpress (P) [MPa]

80 r 7

80 T

for 7

ED i i i i

soi (S) [deg]

% assign list of local designs to test plan

TP.Designs{1} = DList;
% List of local designs
localDesigns = TP.Designs{1}

12-3

12 Em-Sourced Examples

localDesigns=1x15 object
1x15 design array with properties:

Style

Type
NumPoints
NumInputs
Name
Points
PointTypes
Inputs
Generator
Constraints
Model

See Also

More About

. “Design Creation”

12-4

Create Optimal Designs

Create Optimal Designs

This example shows how to create an optimal design for a polynomial model using the Model-Based
Calibration Toolbox™ command-line interface.

Create the Model

You need a model to create an optimal design.

inputs = mbcmodel.modelinput(...
'Symbol', {'N','L','A"'},...
'Name', {'n','load', 'afr'}, ...
'Range', {[1000 5000],[0.2 0.65],[10.9 14.651});

model = mbcmodel.CreateModel('Polynomial', inputs);
model.Properties.Order = [2 2 2];

Create a V-Optimal Design

Create a design for the polynomial model.

optimalDesign = CreateDesign(model,...
'Type', 'V-optimal',...
'Name', 'Optimal Design');

Generate Design

Create a CandidateSet to use.

CandidateSet = optimalDesign.CreateCandidateSet('Type', 'Grid');
CandidateSet.NumberOfLevels = [21 21 21];
% Pass in Generator properties to Generate
optimalDesign = Generate(optimalDesign,...
'"NumberOfPoints', 30,...
'CandidateSet', CandidateSet,...
'MaxIterations', 200,...
'NoImprovement', 50);

Alternative Way to Generate Design

Instead of passing generator settings to Generate, you can modify the design's generator. The two
methods are equivalent, because assigning the generator back to the design causes a call to
Generate.

anotherOptimalDesign = CreateDesign(model, 'Type', 'V-optimal',
‘Name', 'Another Optimal Design');
optimalGenerator = anotherOptimalDesign.Generator;
optimalGenerator.NumberOfPoints = 30;
optimalGenerator.CandidateSet.Type = 'Grid';
optimalGenerator.CandidateSet.NumberOfLevels = [21 21 21];
optimalGenerator.MaxIterations 200;
optimalGenerator.NoImprovement 50;

Setting the Generator causes Generate to be called.

anotherOptimalDesign.Generator = optimalGenerator;

12-5

12 EMm-Sourced Examples

Optimal Criteria

criteria = OptimalCriteria(optimalDesign);
fprintf(['Optimality Criteria for "%s":\n',...

'V = %.3f\nD = %.3f\nA = %.3f\nG = %.3f\n'], ...

optimalDesign.Name, criteria);

Optimality Criteria for "Optimal Design":

V = 0.181
D = 2.492
A =1.050
G = 0.552

Pairwise Plots Of Design

Plot each input against the others.

subplot(2,2,1);
Scatter2D(optimalDesign, 1, 2);

subplot(2,2,3);
Scatter2D(optimalDesign, 1, 3);

subplot(2,2,4);
Scatter2D(optimalDesign, 2, 3);

12-6

Create Optimal Designs

Optimal Design

1000 2000 3000 4000 5000
n(N) [-]
Optimal Design Optimal Design

afr (A) [-]

1000 2000 3000 4000 5000 02 03 04 05 06
n{N)[-] load (L) [-]

See Also

More About

. “Design Creation”

12-7

12 EMm-Sourced Examples

Load and Modify Data

This example shows how to load and modify data using Model-Based Calibration Toolbox™ command-
line interface. Data can be loaded from files (Excel® files, MATLAB® files, text files) and from the
MATLAB® workspace. You can define new variables, apply filters to remove unwanted data, and
apply test notes to filtered tests.

Load Data from Excel®

Load data from holliday.xlIsx.

dataFile = fullfile(matlabroot, 'toolbox',...

'mbc', 'mbctraining', 'holliday data.mat');
data = mbcmodel.CreateData(dataFile);
get(data)

Name: 'holliday data'
NumRecords: 270
NumSignals: 7
NumTests: 27
RecordsPerTest: [10 10
IsEditable: 1
IsBeingEdited: 0
Owner: []
SignalNames: [7x1 string]
SignalUnits: [7x1 string]
Filters: [0x0 struct]
TestFilters: [0x0 struct]
UserVariables: [0x0 struct]

data.SignalNames

ans = 7x1 string

"afr"

"egr"

"load"

npn

"spark"
"logno"

tq

Plot Data

You can use the SignalName as an input to the Value method. Plot the first 5 tests.

X zeros(10,5);
y zeros(10,5);
name = cell(1,5);
% Collect the data as columns to pass to plot.

for tn = 1:5
X(:,tn) = data.Value('spark', tn);
y(:,tn) = data.Value('tq', tn);

name{tn} = sprintf('Test %d', tn);
end
plot(X, Y, 'Xx-);
legend(name);
grid on

12-8

Load and Modify Data

xlabel(sprintf('%s [%s]', 'spark',6 data.SignalUnits{5}));
ylabel(sprintf('%s [%s]', 'tq', data.SignalUnits{5}));
title('tq vs. spark');

tq vs. spark
BD T T T T T T
—*— Test 1
xﬁ*‘_"_ * ——Test 2
alr i Test 3|
g —*—Test 4
/ —*—Test 5
40 7
=
ik}
=30 7
A
201 = 7
10F 7
» 4 H— e e,
- . g R3¢ M
D i i i i i i
-10 1] 10 20 30 40 50 60
spark [deg]

Remove Outliers and Problem Tests

Add a filter to keep tests where the mean torque is greater than 10. A filter is a constraint on the data
set you can use to exclude some tests (test filter) or records (filter). You must call BeginEdit before
making changes. The data is only updated when you call CommitEdit.

numberOfTestsBefore = data.NumberOfTests;

data.BeginEdit;

data.AddTestFilter('mean(tq)>10');

data.CommitEdit;

numberOfTestsAfter = data.NumberOfTests;

fprintf('Removed %d tests.\n', numberOfTestsBefore-numberOfTestsAfter);

Removed 9 tests.

Add New Variable

You can add new variables to the data set.

data.BeginEdit;

data.AddVariable('POWER=tg*n');
data.CommitEdit;

signalNamesBefore = data.SignalNames

12-9

12 EMm-Sourced Examples

signalNamesBefore = 8x1 string

Ilegrll

"load"

IInII

"spark"

“logno"

Iltqll

"POWER"

% POWER is now in the list of SignalNames, and can be used to define other
% new variables.

data.BeginEdit;

data.AddVariable('POWER SQUARED=POWER"2');

data.CommitEdit;

signalNamesAfter = data.SignalNames

signalNamesAfter

9x1 string

regr"
"load"

npn

"spark"

“logno"

tq

"POWER"

"POWER SQUARED"

Apply a Filter

Add a filter to keep only records where speed is greater than 1000.

numberOfRecordsBefore = data.NumberOfRecords;

data.BeginEdit;

data.AddFilter('n>1000"');

data.CommitEdit;

numberOfRecordsAfter = data.NumberOfRecords;

fprintf('Removed %d records.\n', numberOfRecordsBefore-numberOfRecordsAfter);

Removed 38 records.

See Also

More About

. “Data Manipulation for Modeling”

12-10

Create and Apply Constraints

Create and Apply Constraints

This example shows how to create and apply constraints to a design using Model-Based Calibration
Toolbox™ command-line interface.

Create a Design

Create a Full Factorial design, because this will show the constraint boundaries as clearly as possible.
Create the design from inputs. For simplicity, only 2 inputs (speed and load) are used.

inputs = mbcmodel.modelinput(...
'Symbol', {'N','L'},...
"Name', {'SPEED', 'LOAD'}, ...
'Range', {[500 6000]1,[0.0679 0.9502]1});

design CreateDesign(inputs, 'Type', 'Full Factorial');
design Generate(design, 'NumberOfLevels', [50 50]);

% design has a Constraints property, initially this is empty.
constraints = design.Constraints

constraints =

Create a Linear Constraint

cLinear = CreateConstraint(design, 'Type', 'Linear');
cLinear.A = [-2.5e-4, 11;

cLinear.b = 0.25;

cLinear

cLinear =

Linear design constraint: -0.00025*N + 1*L <= 0.25

design.Constraints = clLinear;
design = Generate(design);

Show Constraint

Plot the points to show the linear constraint.

Scatter2D(design, 1, 2);
title('Linear Constraint');

12-11

P W R W W W W W W A A A A W AW A Ny

Linear Constraint

T T T T T T Al T Ll
FEEEERE R R R R R R R R R R R R

R E R R R R R R R R R R R T R e Y
R EE R R R R R EEE R R R R R R R EEEE R R R R R e
R EE R R R EEEEEEEEEEEEEEEEEEEE SRR e

FEF AR R R e
L A TR
R R T
SEEsssEsEsEEEEEEEEEEEEEEdEREEEREEREERdRSEEREREREEE S
jessssssssssaabsssssassssnssnasssssnnanessnnnanns
L R R L
R R R R SRS E RS RS E RS RS E R RS R R BRI R R R R
LR A R R R R R SR ENERNEEENEENEREEEEEREREERNENNENEEEERENENRENERHERNRHEH;RHEHN]
LA R R R R ENEENNENRNENNENERENEREEEENENENENERUNENENENERENEEEERENRERRENERNH.H}NH}N]
ERELEEEE RS EE R R R R RN EENE R R RN EE RN ENENENEENERENERNERNENRNE}NE}NS
SEEsEsEsEEEEEEEEEEEEEEEEdEREEREEREEdEREREREREEE S

R EEE R R EEE R EEE R R R EEEE R R R e

[EA R R R R R AR RREE R R R UREEEEEEERRLERRE R R R LR RENN]
IR R R R R R R R R R R R L R]
EEEEEE RN RN R R RN R R RN
LR R R EE R R R R E LR E R R R RN
L
L N A Y
R R R R R R R R R e e

R OE R W EEEEEEEEEEEEEEEEEE SRR RS
FEEAESEEEEEEEEEEEEREEEERR SRR R

I R R R I

R R R R R R R R EE R R R R R E R
EEE R R R R EEEEEEEEEEEE SRR e E S

- R R
LI L R R R
LR L L
FEAEE R R R R R R R R
R E R R E R E R R]

EEEE S SRR EEE RS
FEEEEE RS E R E R

EEEE R R R
R L

12 Em-Sourced Examples

09r
08
07 r

(1) avo

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

500

SPEED (N) [

Create a 1D Table Constraint

);

"1D Table'

‘Type',

CreateConstraint(design,

cTableld

[0.9 0.5];

cTableld.Table

[500 6000];

cTableld.Breakpoints

cTableld

cTableld =

= Lmax

L(N) <

1D Table design constraint:

cTableld;
Generate(design);

design.Constraints

design

Show Constraint

Plot the points to show the 1D Table constraint.

Scatter2D(design, 1, 2);
'1D Table Constraint

title(

);

12-12

Create and Apply Constraints

1D Table Constraint

PR A W A W A A A A A WA Ay

T T T T T T Al T Ll
FEEAEER R R E R R

I I
R e T Y
EEsEEEsEEEEEEEEEEEE R RS

shessemsesesnense s snmnbe s |

(R R E R L LR LERRELEREEEERLERSERELER]

LR R R R LR R NI EREEREREREERERLERLELRSER]
FEEABE R R BB R R R
L N

L R T
EEsssEsEEsEEEEEEEEEEEEREEEEEE
BmEssEssEEEEEEREEREERREEREEEE S
R R R R R SRR LRSS Y

LA R AR R LR LR EEEELERLERERENELRERLENR)
BEE RS R R R R R e
R T
L T]
R R E R R R B RS R e E e R e)
FEEEEEsEREEEEEEREEEREERREREEEE e

KRR}

R T TR R R R R R R R R E R R R AR R R E R R R R R R TR RN
FEEEE IR SR IR SRR EE SRR R RS
FEAEEEE AR EERERdEREEREREERRERERERREEEE S

LA R R R LR R R EERERREEREEEEILEREEEREELEEERLERLESE N,

LR R R R R RN EEEEEE LR NEREEEREEREERREEREEREEN.]

R R s E EE E s R TR R

R R Ty
BEEEEEEEEE SRR SRR EEEE SRR E SRR R E R

E R EEEEEEEE SR IR E RS AR E R R RSN
R R
LA AR R R R R R ERENEEEEERREREERENEREEEREEEEREEREREERNEN]
LA R AR L LR LR NERNERNELEREEREELEEERENLERNERLEELERELRERENRER)]
BE AR RS R R AR R R R
E R R R]
B EE S S EEEEEEEEEEEEENENEEENEREREEENEEES |
R R R R R R R R
L N

F
3
F
3
F
P
F
F
b
¥
3
F
r
F
F
3
¥
¥
¥
P
F

LI D R

= = = = = = = = =

(1) avo

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

500

SPEED (N) [

Constraints

Comb

Constraints is an array of the constraints to apply.

[cLinear, cTableld];

design.Constraints

design.Constraints

constraints

=Ix2 object

constraints

= 0.25

-0.00025*N + 1*L <

Linear design constraint:

= Lmax

L(N) <

1D Table design constraint:

Generate(design);

design

Show Constraint

Plot the points to show both constraints.

Scatter2D(design, 1, 2);

);

'"Linear and 1D Table Constraint

title(

12-13

Py

Linear and 1D Table Constraint

-

LI 1

L]
L]
L

& & @ & &8 &
&R R R R R R R R R R R R R R R R R R E R R R R R e R e

iiiiii.ii

.iiﬁliii.

LU

LR R

-
-

oW

-

LR RN
LR N
LA R X
-
Y
(]

R R R R R R R e R R
R R R R R R R R R R E

LI

& & F @ & & & F & @ @ 8RR R R R R R R R R R EE R e

LI

&R R R R R R R R R R R R R R R R R R E R R R R R e R e
R R R R R R R R R R R R R R R E R R R R E R R R R R E e R e

& & .

MR E R R R

&
-
-
-
-
-
L
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
L
-
-
-
-
-
-
-
-
-
-
-
-
-
-

*E R EFRERERREFE R ERERE R EFEERR R R RERR P

09r
08

12 Em-Sourced Examples

D_ziii#i‘i.iiii#i.iiiiii'ii‘iii.ii#i‘i.iiii#i.iiiiii

07 r

SPEED (N} []

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

See Also
More About
“Design Creation”

12-14

Gasoline Case Study Design of Experiment

Gasoline Case Study Design of Experiment

This example shows how to design an experiment for the gasoline case study problem using the
command-line interface to Model-Based Calibration Toolbox™. The gasoline case study describes how
to systematically develop a set of optimal steady-state engine calibration tables using Model-Based
Calibration Toolbox™ software.

Create Project and Test Plan

project = mbcmodel.CreateProject('GasolineCaseStudy');
% Define Inputs for test plan
locallnputs = mbcmodel.modelinput(...
'Symbol', 'S',...
"Name', 'SPARK',...
'Range', [0 501);
globalInputs = mbcmodel.modelinput(...
'Symbol', {'N','L"','ICP','ECP'},...
"Name', {'SPEED', 'LOAD', 'INT ADV','EXH RET'},...
'Range', {[500 6000],[0.0679 0.9502],[-5 50],[-5 50]1});
% Create test plan
TP = CreateTestplan(project, {locallnputs,globalIlnputs});

Create Space-Filling Design

CreateDesign defaults to creating a design for the outer (global) level.

sfDesign = CreateDesign(TP,
'Type', 'Latin Hypercube Sampling',...
'Name', 'Space Filling');

Add Boundary Constraints

Load boundary constraints from another project file and add to design.

projectFile = [matlabroot, '\toolbox\mbc\mbctraining\Gasoline project.mat'];
otherProject = mbcmodel.LoadProject(projectFile);

boundaryConstraints = otherProject.Testplans(1l).BoundaryModel('global');

% Design constraints are specified as an array of

% mbcdoe.designconstraint objects.

sfDesign.Constraints = boundaryConstraints;

Change Selection Criteria of LHS Design

Get the design properties and change the SelectionCriteria to 'minimax'. Putting the changed
properties back into the design causes the design to update.

designGenerator = sfDesign.Generator;
% Use "minimax"
designGenerator.SelectionCriteria = 'minimax’

designGenerator =
Latin Hypercube Sampling design generator

sfDesign.Generator = designGenerator;

12-15

12 Em-Sourced Examples

12-16

Get Required Number of Points for a Constrained Design.

As in the Design Editor, when a design has constraints it is hard to achieve the number of points you
require. In the design editor you try different numbers of points and regenerate. At the command line
you can use the ConstrainedGenerate method to do this.

Generate Design

Use ConstrainedGenerate to make a 200 point design.

sfDesign = ConstrainedGenerate(sfDesign, 200,
'UnconstrainedSize', 800,

'MaxIter',10);

% How did we do?
finalNumberOfPoints

sfDesign.NumberOfPoints

finalNumberOfPoints 202

% How many points did we need in total?
totalNumberOfPoints = sfDesign.Generator.NumberOfPoints

totalNumberOfPoints = 751

Generate Design for Parked Cam Phasers

Make another design for some points with parked cam phasers. These points are important because
you need an accurate model when cams are parked.

parkedCamsDesign = sfDesign.CreateDesign('Name', 'Parked');
parkedCamsDesign = ConstrainedGenerate(parkedCamsDesign, 10,
'UnconstrainedSize', 40,
'MaxIter',10);

% Explicitly set ECP and ICP to 0 - this changes the 'Type' to 'Custom'
designTypeBefore = parkedCamsDesign.Type

designTypeBefore =
"Latin Hypercube Sampling'

parkedCamsDesign.Points(:,3:4) = 0;
designTypeAfter = parkedCamsDesign.Type

designTypeAfter =
‘Custom’

% Merge with first design to create a new design
mainDesign = Merge(sfDesign, parkedCamsDesign);
mainDesign.Name = 'Main Design';

Plot Design Points

Scatter2D is a method of mbcdoe.design.

designPoints = mainDesign.Points;
inputs = mainDesign.Inputs;
subplot(2,1,1)

Scatter2D(mainDesign, 1, 2);
subplot(2,1,2)

Scatter2D(mainDesign, 3, 4);

Gasoline Case Study Design of Experiment

Main Design
0&F =" - '_ y ot . 4
Z . - .l ® i - -"‘.'i ‘.y':r-' . . =
g{]ﬁ B . " "' -y . ® '] :'..:. "a :_"..,. ...v ":ln. : 7
.-: s, L: ‘: "-,‘ -.:-. L :". < "y .
g{]‘i | 5 "' .. l.: o . * .::. . % , :-l' . = '. . . i
- . - c'*-- . L . 'h' . i ® .
{]-2 | l' L] - _
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 G000
SPEED (N) [-]
Main Design
50 T T T T T T T T T T
E 4{] i < l-“ - "' L] ® T
% .- tE * = -| L " " - .
W 30T . g® ': : . ¥ _: . .'-' . _"' e ow T
E 201 . ”u- .il b : : |' l--l' n.-" . ' -u-" : & ': * ". :" . " —
[. cr . . M. . | .t . !
I - - - P et - .oy . i
Z 10 s R ANTI RO
Ll] - ' e " r' -
-|:| - e - 1.' .] ., - . 5 i
& 0] 10 15 20 25 30 35 40 45 50

INT ,DV (ICP) [

Add the Designs to the Test Plan

Testplans have a Design property that is a cell array (one cell for each stage). Here you add the

designs to the 2nd stage.

TP.Design{2} = [sfDesign parkedCamsDesign mainDesign];

get(TP)

Data:

Levels:
InputSignalNames:
InputsPerlLevel:
Responses:
Boundary:
SummaryStatistics:
Inputs:

Designs:
BestDesign:
DefaultModels:
ValidationData:
ResponseNames:
Name:

Project:

Set the BestDesign

[]

2

[5x1 string]

[1 4]

[0x0 mbcmodel.abstractnode]

[]

[0x0 table]

{[1x1 mbcmodel.modelinput] [4x1 mbcmodel.modelinput]}
{[1x0 mbcdoe.design] [1x3 mbcdoe.design]}

{I1 1[I}

{[1x1 mbcmodel.localmodel]
[0x0 mbcmodel.data]

{1x0 cell}

'"Two-Stage'

[1x1 mbcmodel.project]

[1x1 mbcmodel.linearmodel]}

Testplans also have a BestDesign property (also a cell array). Set the Best Design for the 2nd stage.

12-17

12 EMm-Sourced Examples

12-18

TP.BestDesign{2} = mainDesign

TP =
testplan with properties:
Data: []
Levels: 2

InputSignalNames: [5x1 string]
InputsPerLevel: [1 4]
Responses: [0x0 mbcmodel.abstractnode]
Boundary: []
SummaryStatistics: [0x0 table]
Inputs: {[1x1 mbcmodel.modelinput] [4x1 mbcmodel.modelinput]}
Designs: {[1x0 mbcdoe.design] [1x3 mbcdoe.design]}
BestDesign: {[] [1x1 mbcdoe.design]}
DefaultModels: {[1x1 mbcmodel.localmodel] [1x1 mbcmodel.linearmodel]}
ValidationData: [0x0 mbcmodel.data]
ResponseNames: {1x0 cell}
Name: 'Two-Stage'
Project: [1x1 mbcmodel.project]

Create Validation Design

Make another space-filling design for collecting validation data.

validationDesign = sfDesign.CreateDesign('Name', 'Validation');
validationDesign = ConstrainedGenerate(validationDesign, 25, ...
'UnconstrainedSize', 100,
'MaxIter',10);

% Add the parked cams point.

validationDesign.Points(end+1,:) = [3500 0.5 0 0];

Add this to testplan as well - when you add one design only, using
AddDesign is more convenient. By default this adds the design to 2nd
stage.

Note: alternatively, you could add the design to TP.Design{2} directly.
TP.AddDesign(validationDesign);

% The list of designs for the 2nd stage

allDesigns = TP.Design{2}

o° o° o° o°

allDesigns=1x4 object
1x4 design array with properties:

Style

Type
NumPoints
NumInputs
Name

Points
PointTypes
Inputs
Generator
Constraints

Gasoline Case Study Design of Experiment

Model

See Also

More About

. “Gasoline Case Study Overview” on page 2-2

12-19

12 Em-Sourced Examples

Point-by-Point Modeling for a Diesel Engine

12-20

This example shows how to use the Model-Based Calibration Toolbox™ command-line functionality for
point-by-point engine modeling projects.

Multiple injection diesel engines and gasoline direct-injection engines can often only be modeled with
point-by-point models. You can use point-by-point models to build a model at each operating point of
an engine with the necessary accuracy to produce an optimal calibration. Point-by-point command-
line functionality is necessary to handle the complexity of developing designs for each operating
point.

Why are point-by-point models necessary? Engine actuators and sensors are continually being added
to Engine Management Systems (EMS) in response to ever-increasing engine emissions, fuel
economy, and performance requirements. In some cases, optimal engine calibration development
processes that rely on two-stage modeling may no longer be able to model engine performance
responses with sufficient accuracy across the engine operating range. Point-by-point models can
provide the necessary model accuracy at measured operating points. However, point-by-point models
do not provide estimated responses at other operating points.

This example uses the two-stage models generated in the diesel case study as a surrogate for an
engine dynamometer or CAE engine model, in order to generate the point-by-point data for this
example. The example shows you how to:

* Generate local designs at each operating point. If insufficient design points can be collected, you
can augment the local design using Sobol sequences.

* Create local multiple models to model each of the responses at each operating point.

* Build a point-by-point boundary model to define the data boundary at each operating point for
later use in calibration optimization.

Finally, you must visually inspect the fitted models to verify that the model quality is acceptable. You
usually need to identify and remove outliers. You can use the command-line to plot diagnostics and
remove outliers, but it is easier to use the graphical and statistical tools in the Model Browser
(mbcmodel) provided in the Model-Based Calibration Toolbox.

Load Models from Diesel Project
This example uses engine data generated from the models in the diesel case study.

The inputs are MAINSOI, SPEED, BASEFUELMASS, FUELPRESS, VGTPOS, EGRPOS

DieselProject = mbcmodel.LoadProject(...
fullfile(mbcpath, 'mbctraining', 'Diesel project.mat'));

% Store the models in a structure for convenience

DieselResponses = DieselProject.Testplans.Responses;

Models.BTQ = DieselResponses(1l);

Models.VGTSPEED = DieselResponses(2);

Models.EQREXH = DieselResponses(3);

Models.PEAKPRESS = DieselResponses(4);

Models.NOX = DieselResponses(6);

Models.EGRMF = DieselResponses(7);

Define Inputs for Point-by-Point Models and Create Local Model

* The operating point variables are speed (SPEED) and brake torque (BTQ).

Point-by-Point Modeling for a Diesel Engine

* The local inputs are main start of injection (MAINSOI), fuel pressure (FUELPRESS), variable gate
turbo position (VGTPOS), and exhaust gas recirculation position (EGRPOS).

OperatingPointInputs = mbcmodel.modelinput('Symbol"',{'SPEED', 'BTQ'}, ...
'Name',{'SPEED', 'BTQ'}, ...
"Units',{'rpm','Nm'}, ...
'Range',{[1600 2200],[0 16001});
LocalInputs = mbcmodel.modelinput(...
'Symbol', {'MAINSOI', 'FUELPRESS', 'VGTPOS', 'EGRP0S'}, ...
"Name', {'MAINSOI', 'FUELPRESS', 'VGTPOS', 'EGRP0S'}, ...
'Units',{'deg', 'MPa', 'ratio','mm'},...
'Range',{[-9 3],[90 160],[0.2 0.9]1,[0.5 51});
Create a local multiple model
= mbcmodel.CreateModel('Point-by-Point',Locallnputs);
Select the best model using the PRESS RMSE statistic.
.Properties.SelectionStatistic = 'PRESS RMSE';

— o° - o°

Define Engine Operating Points

The design for the operating points is a 7 point drive cycle.

Xg = [2200.0 1263.0

2200.0 947.0
2200.0 632.0
2200.0 126.0
1600.0 1550.0
1600.0 1163.0
1600.0 775.01;

OperatingPointDesign = CreateDesign(OperatingPointInputs);
OperatingPointDesign.Points = Xg;
OperatingPointDesign.Name = 'Drive cycle';

Create a Local Design for Each Operating Point

For each operating point, adjust limits for main injection, fuel pressure and VGTPOS, and generate a
128 point Sobol design.

localDesign = CreateDesign(Locallnputs, 'Type', 'Sobol Sequence');
localDesignGenerator = localDesign.Generator;

NumLocalPoints = 128;

localDesignGenerator.NumberOfPoints = NumLocalPoints;

DList = mbcdoe.design.empty(0, 1);

data = [1;

for i = 1l:0peratingPointDesign.NumberOfPoints
OperatingPoint = OperatingPointDesign.Points(i,:);
speed = OperatingPoint(1);
TQDemand = OperatingPoint(2);

Name the Local Design by Operating Point
localDesign.Name = sprintf('Test %2d (%s=%4.0f,%s=%3.0f)"', i,...

OperatingPointInputs(1l).Symbol,OperatingPoint(1),....
OperatingPointInputs(2).Symbol,OperatingPoint(2));

12-21

12 EMm-Sourced Examples

12-22

Set Up Limits Depending on Speed for Local Inputs

When you use the Limits property to specify the input range, you generate a Sobol design with
exactly NumLocalPoints points.

f = (speed-1600)/(2200-1600);

The main soi range varies from [-3,3] at 1600 rpm to

[-9,-3] at 2200 rpm.

localDesignGenerator.Limits(1,:) = (1-f)*[-3,3] + f*[-9,-31;

% The fuel pressure range varies from [90,130] at 1600 rpm to

% [120,160] at 2200 rpm.

localDesignGenerator.Limits(2,:) = (1-f)*[90 120] + f*[110,160];
% The VGTPOS range varies from [0.2,0.4] at 1600 rpm to

% [0.6,0.9] at 2200 rpm.

localDesignGenerator.Limits(3,:) = (1-f)*[0.2 0.4] + f*[0.6 0.9];

%
%

% set design properties and generate local design
localDesign.Generator = localDesignGenerator;

Collect Engine Data for Local Design

Find

the fuel required to obtain the demanded torque for each point in the local design

[Xlocal,XTS] = mbcSolveTQ(Models, localDesign.Points, speed, TQDemand) ;

Augment Designs if Necessary

Check that enough points have been collected after running the 128 point DOE (design of

expe
sequ

Test
Test
Test
Test
Test
Test
Test

riment). Collect extra points by augmenting the Sobol Sequence with the next N points in the
ence if necessary.

N = NumLocalPoints;

count = 1;

while size(Xlocal,1l) < NumLocalPoints*0.75 && count<10
localDesign = Generate(localDesign,...

'Skip',N, ...
"NumberOfPoints',N);
N = N*2;
% Find the fuel required to obtain the demanded torque for each point in

% the augmented local design
[Xlocalaug, XTSaug] = mbcSolveTQ(Models,localDesign.Points, speed, TQDemand);
Xlocal = [Xlocal; Xlocalaug]; S#ok<AGROW>
XTS = [XTS; XTSaug]; %#ok<AGROW>
end

% Update points in the local design
localDesign.Points = Xlocal;
fprintf('%s: %d points\n',localDesign.Name,localDesign.NumberOfPoints);

(SPEED=2200,BTQ=1263): 127 points
(SPEED=2200,BTQ=947): 128 points
(SPEED=2200,BTQ=632): 128 points
(SPEED=2200,BTQ=126): 128 points
(SPEED=1600,BTQ=1550): 116 points
(SPEED=1600,BTQ=1163): 119 points
(SPEED=1600,BTQ=775): 128 points

NoupbhwNRE

Point-by-Point Modeling for a Diesel Engine

Collect Response Data

Calculate response data from the diesel case study models

BTQ = TQDemand*ones(size(Xlocal,l),1);

AFR = 14.46./Models.EQREXH.PredictedValue(XTS);

EGRMF = Models.EGRMF.PredictedValue(XTS);

BSNOX = 3600*Models.NOX.PredictedValue(XTS)/159.5573;
PEAKPRESS = Models.PEAKPRESS.PredictedValue(XTS)/1e6;
VGTSPEED = Models.VGTSPEED.PredictedValue(XTS);

BSFC = 5400.*XTS(:,3)./(BTQ*pi);

Check Fit for BSFC
Check RMSE < 2

[stats,Lbsfc] = Fit(L,Xlocal,BSFC);
if stats(5)>2

fprintf('Poor fit for test %d.\n',1i)
end

Accumulate Data and Local Designs

You can ensure tests are automatically defined by defining a variable 'logno'.

data = [data ;
Xlocal XTS(:,2:3) ...
BTQ BSFC AFR EGRMF BSNOX PEAKPRESS VGTSPEED i*ones(size(Xlocal,1l),1)]; %#ok<AGROW>
DList(i) = localDesign;
end

Create Project and Test Plan
Create an mbcmodel project and build models

project = mbcmodel.CreateProject('DieselPointByPoint');

% Create test plan

TP = CreateTestplan(project, {Locallnputs,OperatingPointInputs});
TP.Name = 'Point-by-point';

% Assign list of local designs to test plan
TP.Designs{1l} = DList;

% Set as best design in test plan
TP.BestDesign{2} = OperatingPointDesign;

Make and Import Data Structure

D project.CreateData();
S D.ExportToMBCDataStructure;
s.varNames = {LocalInputs.Name ...
'SPEED', 'MAINFUEL','BTQ' 'BSFC' 'AFR' 'EGRMF' 'BSNOX' 'PEAKPRESS' 'VGTSPEED', 'logno'};
s.varUnits = {'deg','MPa', 'mm', 'ratio',...
"rpm', 'mg/stroke', 'Nm', 'g/kWhr','ratio', 'ratio', 'g/kWhr', 'MPa', "'rpm',"'"'};
s.data = data;

.BeginEdit;
.ImportFromMBCDataStructure(s);
.CommitEdit;

P.AttachData(D);

— O OO

12-23

12 EMm-Sourced Examples

12-24

Build Point-by-Point Boundary Model

Use a convex hull for local boundaries.

B = TP.Boundary.Local.CreateBoundary('Point-by-Point"');
B.LocalModel = CreateBoundary(B.LocalModel, 'Convex hull');
% Add point-by-point boundary model to project.
TP.Boundary.Local.Add(B);

Build Response Models
Use a local multiple model and no global model.
Responses = {'BSFC', 'BSNOX', 'AFR', "EGRMF', 'PEAKPRESS', 'VGTSPEED', '"MAINFUEL'};
for i = 1l:length(Responses)
TP.CreateResponse(Responses{i},L,[]);
end

Inspect and Refine Models

Finally, you must visually inspect the fitted models to verify that the model quality is acceptable. You
usually need to identify and remove outliers. You can use the command-line to plot diagnostics and
remove outliers, but it is easier to use the graphical and statistical tools in the Model Browser
(mbcmodel) provided in the Model-Based Calibration Toolbox.

You must save the project to a file before loading it into the Model Browser.
project.Save('DieselPointByPoint.mat');

mbcmodel('DieselPointByPoint.mat")

See Also

More About

. “Multi-Injection Diesel Calibration Workflow” on page 4-2

Gasoline Case Study

Gasoline Case Study

This example shows how to automatically generate an mbcmodel project for the gasoline case study
using the command-line functions. First, you create and load data into a project. Next, you build a
test plan, boundary models, and responses. Then you remove data outliers and create feature models.
Finally, you make a two-stage model and plot torque versus spark. The example uses the
DIVCP Main DoE Data.mat file in the mbctraining folder.

Create a New mbcmodel Project

Use the CreateProject function to create a project.
project = mbcmodel.CreateProject;

Load Data into Project

Use functions to group data into tests, remove bad data, and remove tests that do not have enough
data to fit local models.

datafile = fullfile(mbcpath, 'mbctraining', 'DIVCP Main DoE Data.mat');
data = CreateData(project, datafile);

BeginEdit(data);

% Group data by test number GDOECT.

DefineTestGroups(data, 'GDOECT', 0.5, 'GDOECT', false);
% Get rid of data which is probably unstable.

AddFilter(data, 'RESIDFRAC < 35');

AddFilter(data, 'AFR > 14.25"');

% Get rid of the tests that are too small.

AddTestFilter(data, 'length(BTQ) > 4');

% Commit the changes to the project.
CommitEdit(data);

Build Test Plan

Define the inputs for the test plan.

LocalInputs = mbcmodel.modelinput('Symbol"','S", ...
"Name', 'SPARK', ...
'Range', [0 50]);
GlobalInputs = mbcmodel.modelinput('Symbol',{'N",'L","ICP", 'ECP"}, ...
'Name',{'SPEED', 'LOAD', 'INT ADV','EXH RET'}, ...
'Range',{[500 6000],[0.0679 0.9502]1,[-5 501,[-5 501});
% Create test plan.
testplan = CreateTestplan(project, {Locallnputs,GlobalInputs});
% Attach data to the test plan.
AttachData(testplan, data);

Build Boundary Models
Create a global boundary model and add it to the test plan tree.
CreateBoundary(testplan.Boundary.Global, 'Star-shaped');

Add boundary model to the test plan. The boundary model is fitted when it
is added to the boundary model tree. The boundary model is included in

12-25

12 EMm-Sourced Examples

12-26

% the best boundary model for the tree by default.

% ALl inputs are used in the boundary model by default.

B = Add(testplan.Boundary.Global,B);

% Make a boundary model using only speed and load and add to the
% boundary tree.

B.Activelnputs = [true true false false];

B = Add(testplan.Boundary.Global,B);

% Look at the global boundary tree.

testplan.Boundary.Global

ans =
Tree with properties:

Data: [189x4 double]
Models: {[1x1 mbcboundary.Model] [1x1 mbcboundary.Model]}
BestModel: [1x1 mbcboundary.Boolean]
InBest: [1 1]
TestPlan: [1x1 mbcmodel.testplan]

Build Responses

Build response models for torque, exhaust temperature and residual fraction. Use a local polynomial
spline model for torque. For the exhaust temperature and residual fraction, use a local polynomial
model with datum.

LocalTorque = mbcmodel.CreateModel('Local Polynomial Spline',1);
LocalTorque.Properties.LowOrder = 2;

% Use the default global model.

GlobalModel = testplan.DefaultModels{2};

CreateResponse(testplan, 'BTQ',LocalTorque,GlobalModel, 'Maximum');

% make exhaust temperature and residual fraction models

LocalPoly = mbcmodel.CreateModel('Local Polynomial with Datum',1);
CreateResponse(testplan, '"EXTEMP',LocalPoly,GlobalModel, 'Linked');
CreateResponse(testplan, 'RESIDFRAC',LocalPoly,GlobalModel, 'Linked"');

Remove Local Outliers

Remove data if abs (studentized residuals) > 3. The Gasoline project uses a different
process to decide which outliers to remove.

TQ response = testplan.Responses(1l);
numTests = TQ response.NumberOfTests;
LocalBTQ = TQ response.LocalResponses;
for tn = l:numTests
% Find observations with studentized residuals greater than 3
studentRes = DiagnosticStatistics(LocalBTQ, tn, 'Studentized residuals');
potentialOut = abs(studentRes)> 3;
if any(potentialOut)
% Don't update response feature models until end of loop
RemoveQutliersForTest(LocalBTQ, tn, potentialOut , false);
end
% get local model for test and look at summary statistics
mdl = ModelForTest(LocalBTQ,tn);
if ~strcmp(mdl.Status, 'Not fitted')
LocalStats = SummaryStatistics(mdl);
end
end

Gasoline Case Study

Update the response features.
UpdateResponseFeatures(LocalBTQ);
Remove Points Where MBT<0 or MBT>60

Remove points where the maximum brake torque (MBT) is less than 0 or greater than 60.

knot = LocalBTQ.ResponseFeatures(1l);
PointsToRemove = knot.DoubleResponseData<@ | knot.DoubleResponseData>60;
knot.RemoveOutliers(PointsToRemove) ;

Create Alternative Response Feature Models

Make a list of these alternative response feature models. Select the best model, based on the Akaike
Information Criteria (AICc).

* Quadratic

* Cubic

* RBF with a range of centers

* Polynomial-RBF with a range of centers

Get the base model. You use this to create the other models.

rf = LocalBTQ.ResponseFeatures(1l);
BaseModel = rf(1).Model;

Make a quadratic model that uses Minimize PRESS to fit. Add it to the list.

m = BaseModel.CreateModel('Polynomial');
m.Properties.Order = [2 2 2 2];
m.FitAlgorithm = 'Minimize PRESS';
mlist = {m};

Make a cubic model and add it to the list.

m.Properties.Order = [3 3 3 3];
m.Properties.InteractionOrder = 2;
mlist{2} = m;

Make RBF models with a range of centers. The maximum number of centers is set in the center
selection algorithm.

m = BaseModel.CreateModel('RBF');
Centers = [50 80];

Start = length(mlist);
mlist = [mlist cell(size(Centers))];
for i = 1l:length(Centers)

fitAlgorithm = m.FitAlgorithm.WidthAlgorithm.NestedFitAlgorithm;
fitAlgorithm.CenterSelectionAlg.MaxCenters = Centers(i);
m.FitAlgorithm.WidthAlgorithm.NestedFitAlgorithm = fitAlgorithm;
mlist{Start+i} = m;

end

Make Polynomial-RBF models with a range of centers.

m = BaseModel.CreateModel('Polynomial-RBF');
m.Properties.Order = [2 2 2 2];

12-27

12 EMm-Sourced Examples

Start = length(mlist);
mlist = [mlist cell(size(Centers))];
for i = 1l:length(Centers)

% Maximum number of centers is set in the nested fit algorithm
m.FitAlgorithm.WidthAlgorithm.NestedFitAlgorithm.MaxCenters = Centers(i);
mlist{Start+i} = m;

end

Make alternative models for each response feature and select the best model, based on AICc.

criteria = 'AICc';
CreateAlternativeModels(LocalBTQ, mlist, criteria);

Alter Response Feature Models

Get the alternative responses for the knot model. Alter the models using stepwise regression.

knot = LocalBTQ.ResponseFeatures(1l);
AltResponse = knot.AlternativeResponses(1l);

Get the stepwise statistics.

knot model = AltResponse.Model;
[stepwise stats,knot model] = StepwiseRegression(knot model);

Use PRESS to find the best term to change. Toggle the stepwise status of the term with an index.

[bestPRESS, ind] = min(stepwise stats(:,4));
[stepwise stats,knot model] = StepwiseRegression(knot model, ind);

Get a variance inflation factor (VIF) statistic.

VIF = MultipleVIF(knot model)

<
—
T
|

= 11x1

.1290
.2918
.6841
.1832
.3230
.6617
.6603
.3306
.2856
.4317

PR RERENRRRRW

Get the RMSE.
RMSE = SummaryStatistics(knot model, 'RMSE')

RMSE 5.1578

Change the model to a Polynomial-RBF with a maximum of 10 centers.

new knot model = knot model.CreateModel('Polynomial-RBF');
new knot model.Properties.Order = [1 1 1 1];

12-28

Gasoline Case Study

new knot model.FitAlgorithm.WidthAlgorithm.NestedFitAlgorithm.MaxCenters = 10;
% Fit the model with current data.
[new knot model,S] = fit(new knot model);

If there are no problems with the changes, update the response. Otherwise, continue to use the
original model.

if strcmp(new knot model.Status, 'Fitted')
new RMSE = SummaryStatistics(new knot model, 'RMSE")
% Update the response with the new model.
UpdateResponse(new knot model);

end

new RMSE = 3.5086
Make a Two-Stage Model for Torque

Make a two-stage model for the torque response.

doMLE = true;

MakeHierarchicalResponse(LocalBTQ, doMLE);

% Look at the Local and Two-Stage RMSE.

BTQ RMSE = SummaryStatistics(LocalBTQ, {'Local RMSE', 'Two-Stage RMSE'})

BTQ RMSE = 1Ix2

0.8319 4.6117

Plot the Two-stage Model of Torque Against Spark

Plot the torque versus spark for test 5.

testToPlot = 5;

BTQInputData = TQ response.DoubleInputData(testToPlot);

BTQResponseData = TQ_response.DoubleResponseData(testToPlot);

BTQPredictedValue = TQ response.PredictedValue(BTQInputData);

fig = figure;

plot(BTQInputData(:,1), BTQResponseData, 'o',...
BTQInputData(:,1), BTQPredictedValue, '-');

xlabel('spark');

ylabel('torque');

title('Test 5');

grid on

12-29

12 Em-Sourced Examples

100 T T T

90 F .;' o

L

As F .- .

torque

B0 - -

=]
tn
,.ﬂ
=T
i

&0 i i 1 1 1 1 1 1 i 1
0 5 10 15 20 25 30 35 40 45 50

spark

Build Other Responses

Follow these steps to build response models for the exhaust temperature and residual fraction.

* Copy outliers from torque model.
* Make alternative models for each response feature.
* Make a two-stage model without maximum likelihood estimation (MLE).

Exhaust Temperature Response

EXTEMP = testplan.Responses(2).LocalResponses(1l);
EXTEMP.RemoveOutliers(OutlierIndices(LocalBTQ));

CreateAlternativeModels(EXTEMP,mlist, criteria);
MakeHierarchicalResponse(EXTEMP, false);

EXTEMP_RMSE = SummaryStatistics(EXTEMP, {'Local RMSE', 'Two-Stage RMSE'})
EXTEMP_RMSE = 1Ix2

10.5648 27.9941

Residual Fraction Response
RESIDFRAC = testplan.Responses(3).LocalResponses(1l);

RESIDFRAC.RemoveQutliers(OutlierIndices(LocalBTQ));
CreateAlternativeModels(RESIDFRAC,mlist, criteria);

12-30

Gasoline Case Study

ok = MakeHierarchicalResponse(RESIDFRAC, false);
RESIDFRAC RMSE = SummaryStatistics(RESIDFRAC, {'Local RMSE', 'Two-Stage RMSE'})

RESIDFRAC RMSE = 1x2

0.0824 0.5596

if isgraphics(fig)
% delete figure made during example
delete(fig)

end

See Also

CreateAlternativeModels | CreateBoundary | CreateData | CreateModel | CreateProject
| CreateResponse | CreateTestplan

12-31

	Introduction
	Model-Based Calibration Toolbox Product Description
	What Is Model-Based Calibration?
	Designs and Modeling in the Model Browser
	Calibration Generation in CAGE

	Gasoline Engine Calibration
	Gasoline Case Study Overview
	Gasoline Calibration Problem Definition
	Case Study Example Files

	Design of Experiment
	Context
	Benefits of Design of Experiment
	Power Envelope Survey Testing
	Create Designs and Collect Data
	Data Collection and Physical Modeling

	Empirical Engine Modeling
	Examine Response Models
	Examine the Test Plan

	Optimization
	Optimization Overview
	View Optimization Results
	Set Up Optimization
	Filling Tables From Optimization Results

	Design and Modeling Scripts
	Introduction to the Command-Line Interface
	Automate Design and Modeling With Scripts
	Processes You Can Automate
	Engine Modeling Scripts

	Understanding Model Structure for Scripting
	Projects and Test Plans for Model Scripting
	Response Model Scripting
	Boundary Model Scripting

	How the Model Tree Relates to Command-Line Objects

	Multi-Injection Diesel Calibration
	Multi-Injection Diesel Calibration Workflow
	Multi-Injection Diesel Problem Definition
	Engine Calibration Workflow
	Air-System Survey Testing
	Multi-Injection Testing
	Data Collection and Physical Modeling
	Statistical Modeling
	Optimization Using Statistical Models
	Case Study Example Files

	Design of Experiment
	Benefits of Design of Experiment
	Air-System Survey Testing
	Create Designs and Collect Data
	Fit a Boundary Model to Air Survey Data
	Use the Air Survey and Boundary Model to Create the Final Design
	Multi-Injection Testing

	Statistical Modeling
	Examine the Test Plans for Point-by-Point Models
	Examine Response Models

	Optimization
	Optimization Overview
	Set Up Models and Tables for Optimization
	Examine the Point Optimization Setup
	Examine the Point Optimization Results
	Create Sum Optimization from Point Optimization
	Fill Lookup Tables from Optimization Results
	Examine the Multiobjective Optimization

	Model Quickstart
	Use a Two-Stage Model To Predict Engine Torque
	Open the App and Load Data
	Set Up the Model
	Verify the Model
	Export the Model
	Create Multiple Models to Compare

	Generate Current Controller Calibration Tables for Flux-Based Motor Controllers
	Collect and Post Process Motor Data
	Model Motor Data
	Generate Calibration

	Mapped Engine Lookup Tables
	Mapped CI Lookup Tables as Functions of Fuel Mass and Engine Speed
	Use Test Plan Template to Fit Models
	Open CAGE Project
	Use CAGE to Import and Replace Models
	Review and Export Lookup Tables

	Mapped CI Lookup Tables as Functions of Engine Torque and Speed
	Use Test Plan Template to Fit Models
	Open CAGE Project
	Use CAGE to Import and Replace Models
	Review and Export Lookup Tables

	Mapped SI Lookup Tables as Functions of Engine Torque and Speed
	Use Test Plan Template to Fit Models
	Open CAGE Project
	Use CAGE to Import and Replace Models
	Review and Export Lookup Tables

	Design of Experiment
	Design of Experiments
	Why Use Design of Experiment?
	Design Styles
	Create Examples Using the Design Editor

	Set Up a Model and Create a Design
	Set Up Model Inputs
	Open the Design Editor
	Create a New Design

	Create a Constrained Space-Filling Design
	Apply Constraints

	View Design Displays
	Use the Prediction Error Variance Viewer
	Introducing the Prediction Error Variance Viewer
	Add Points Optimally

	Data Editor for Modeling
	Manipulate Data for Modeling
	View and Edit the Data
	Create New Variables and Filters
	Store and Import Variables, Filters, and Plot Preferences
	Define Test Groupings
	Match Data to Experimental Designs

	Tradeoff Calibration
	Set Up and Perform a Tradeoff Calibration
	Set Up a Tradeoff Calibration
	Perform the Tradeoff Calibration

	Data Sets
	Compare Calibrations To Data
	Setting Up the Data Set
	Comparing the Items in a Data Set
	Reassigning Variables

	Filling Lookup Tables from Data
	Fill Lookup Tables from Data
	Setting Up a Lookup Table and Experimental Data
	Fill Lookup Table from Experimental Data
	Select Data Regions
	Export the Calibration

	Optimization and Automated Tradeoff
	Optimization and Automated Tradeoff
	Import Models to Optimize

	EM-Sourced Examples
	Create Local Designs
	Create Optimal Designs
	Load and Modify Data
	Create and Apply Constraints
	Gasoline Case Study Design of Experiment
	Point-by-Point Modeling for a Diesel Engine
	Gasoline Case Study

